ESD9R3.3S, SZESD9R3.3S # **ESD Protection Diode** # **Ultra-Low Capacitance** The ESD9R is designed to provide ESD protection for ASSPs and ASICs used in ultra low current applications such as human body sensors. These devices have been designed for leakage under 1 nA from 0°C to 50°C when turned off. During an ESD event, these devices turn on to clamp the ESD to a safe voltage level for the IC. These devices have the added benefits of low capacitance for high speed data lines and small package size for space constrained designs. ## **Specification Features:** - Ultra-Low Leakage < 1 nA - Ultra-Low Capacitance 0.5 pF - Low Clamping Voltage - Small Body Outline Dimensions: 0.039" x 0.024" (1.00 mm x 0.60 mm) - Low Body Height: 0.016" (0.4 mm) - Stand-off Voltage: 3.3 V - Response Time < 1.0 ns - IEC61000-4-2 Level 4 ESD Protection - SZ Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable - This is a Pb-Free and Halogen-Free Device ### **Mechanical Characteristics:** CASE: Void-free, transfer-molded, thermosetting plastic Epoxy Meets UL 94 V-0 **LEAD FINISH:** 100% Matte Sn (Tin) **MOUNTING POSITION:** Anv QUALIFIED MAX REFLOW TEMPERATURE: 260°C Device Meets MSL 1 Requirements #### **MAXIMUM RATINGS** | Rating | Symbol | Value | Unit | |--|------------------|-------------|------| | IEC 61000-4-2 (ESD) Contact | | ±10 | kV | | Air | | ±15 | | | НВМ | | ±16 | | | Total Power Dissipation on FR-5 Board (Note 1) @ T _A = 25°C | P _D | 150 | mW | | Storage Temperature Range | T _{stg} | -55 to +150 | °C | | Junction Temperature Range | T_J | -55 to +125 | °C | | Lead Solder Temperature – Maximum (10 Second Duration) | TL | 260 | °C | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. $FR-5 = 1.0 \times 0.75 \times 0.62$ in. See Application Note AND8308/D for further description of survivability specs. 1 # ON Semiconductor® www.onsemi.com SOD-923 CASE 514AB #### **MARKING DIAGRAM** J = Specific Device Code M = Date Code *Date Code orientation and/or position may vary depending upon manufacturing location. #### **ORDERING INFORMATION** | Device | Package | Shipping [†] | |----------------|----------------------|-----------------------| | ESD9R3.3ST5G | SOD-923
(Pb-Free) | 8000 / Tape &
Reel | | SZESD9R3.3ST5G | SOD-923
(Pb-Free) | 8000 / Tape &
Reel | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. #### **DEVICE MARKING INFORMATION** See specific marking information in the device marking column of the Electrical Characteristics tables starting on page 2 of this data sheet. ## **ELECTRICAL CHARACTERISTICS** (T_A = 25°C unless otherwise noted) | | _ | |------------------|---| | Symbol | Parameter | | I _{PP} | Maximum Reverse Peak Pulse Current | | V _C | Clamping Voltage @ I _{PP} | | V _{RWM} | Working Peak Reverse Voltage | | I _R | Maximum Reverse Leakage Current @ V _{RWM} | | V_{BR} | Breakdown Voltage @ I _T | | I _T | Test Current | | I _F | Forward Current | | V _F | Forward Voltage @ I _F | | P _{pk} | Peak Power Dissipation | | С | Max. Capacitance @ V _R = 0 and f = 1.0 MHz | ^{*}See Application Note AND8308/D for detailed explanations of datasheet parameters. ## **ELECTRICAL CHARACTERISTICS** ($T_A = 25^{\circ}C$ unless otherwise noted, $V_F = 1.0 \text{ V Max.}$ @ $I_F = 10 \text{ mA}$ for all types) | | | V _{RWM}
(V) | I _R (nA) @ 1 V
T _A = 0°C
to 50°C
(Note 4) | V _{BR} (V) @ I _T
(Note 2) | Ι _Τ | С | (pF) | V _C (V)
@ I _{PP} = 1 A
(Note 5) | v _c | |--------------|-------------------|-------------------------|--|--|----------------|-----|------|---|------------------------------| | Device* | Device
Marking | Max | Max | Min | mA | Тур | Max | Max | Per IEC61000-4-2
(Note 3) | | ESD9R3.3ST5G | J** | 3.3 | 1.0 | 4.8 | 1.0 | 0.5 | 0.9 | 7.8 | Figures 1 and 2
See Below | ^{*}Includes SZ-prefix device where applicable. - 2. V_{BR} is measured with a pulse test current I_T at an ambient temperature of 25°C. - 3. For test procedure see Figures 3 and 4 and Application Note AND8307/D. - 4. Limits over temperature are guaranteed by design, not production tested. - 5. $V_{\mbox{\scriptsize C}}$ measured using pulse waveform in Figure 5. Figure 1. ESD Clamping Voltage Screenshot Positive 8 kV Contact per IEC61000-4-2 Figure 2. ESD Clamping Voltage Screenshot Negative 8 kV Contact per IEC61000-4-2 ^{**}Rotated 270°. # ESD9R3.3S, SZESD9R3.3S #### IEC 61000-4-2 Spec. | | - | | | | |-------|-------------------------|------------------------------|-------------------------|-------------------------| | Level | Test
Voltage
(kV) | First Peak
Current
(A) | Current at
30 ns (A) | Current at
60 ns (A) | | 1 | 2 | 7.5 | 4 | 2 | | 2 | 4 | 15 | 8 | 4 | | 3 | 6 | 22.5 | 12 | 6 | | 4 | 8 | 30 | 16 | 8 | Figure 3. IEC61000-4-2 Spec Figure 4. Diagram of ESD Test Setup The following is taken from Application Note AND8308/D – Interpretation of Datasheet Parameters for ESD Devices. #### **ESD Voltage Clamping** For sensitive circuit elements it is important to limit the voltage that an IC will be exposed to during an ESD event to as low a voltage as possible. The ESD clamping voltage is the voltage drop across the ESD protection diode during an ESD event per the IEC61000-4-2 waveform. Since the IEC61000-4-2 was written as a pass/fail spec for larger systems such as cell phones or laptop computers it is not clearly defined in the spec how to specify a clamping voltage at the device level. ON Semiconductor has developed a way to examine the entire voltage waveform across the ESD protection diode over the time domain of an ESD pulse in the form of an oscilloscope screenshot, which can be found on the datasheets for all ESD protection diodes. For more information on how ON Semiconductor creates these screenshots and how to interpret them please refer to AND8307/D. Figure 5. 8 x 20 μs Pulse Waveform SOD-923 CASE 514AB ISSUE D **DATE 03 SEP 2020** # **SOLDERING FOOTPRINT*** See Application Note AND8455/D for more mounting details *For additional information on our Pb-Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. - NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. - 2. CONTROLLING DIMENSION: MILLIMETERS. 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH, MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. DIMENSION L WILL NOT EXCEED 0.30mm. | | MILLIMETERS | | | INCHES | | | | |-----|-------------|------|------|--------|---------|-------|--| | DIM | MIN | NOM | MAX | MIN | MON | MAX | | | Α | 0.34 | 0.37 | 0.40 | 0.013 | 0.015 | 0.016 | | | b | 0.15 | 0.20 | 0.25 | 0.006 | 800.0 | 0.010 | | | С | 0.07 | 0.12 | 0.17 | 0.003 | 0.005 | 0.007 | | | D | 0.75 | 0.80 | 0.85 | 0.030 | 0.031 | 0.033 | | | Е | 0.55 | 0.60 | 0.65 | 0.022 | 0.024 | 0.026 | | | HE | 0.95 | 1.00 | 1.05 | 0.037 | 0.039 | 0.041 | | | L | 0.19 REF | | | 0 | .007 RE | F | | | L2 | 0.05 | 0.10 | 0.15 | 0.002 | 0.004 | 0.006 | | #### **GENERIC MARKING DIAGRAM*** = Specific Device Code Х = Date Code *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking. STYLE 2: PIN 1. CATHODE (POLARITY BAND) 2. ANODE NO POLARITY | DOCUMENT NUMBER: | 98AON23284D | Electronic versions are uncontrolled except when accessed directly from the Document Repository
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | | | |------------------|----------------------------|--|-------------|--|--| | DESCRIPTION: | SOD-923, 1.0x0.6x0.37, MA) | K HEIGHT 0.40 | PAGE 1 OF 1 | | | onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. **onsemi** does not convey any license under its patent rights nor the rights of others. onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase #### ADDITIONAL INFORMATION **TECHNICAL PUBLICATIONS:** $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$ onsemi Website: www.onsemi.com ONLINE SUPPORT: www.onsemi.com/support For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales