

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceed the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-35835
 - Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
- Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

Am29C827/Am29C828 Am29C927/Am29C928

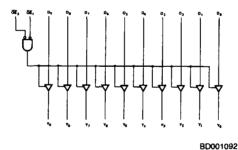
High-Performance CMOS Bus Buffers

DISTINCTIVE CHARACTERISTICS

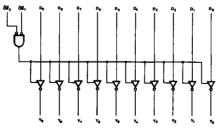
- · High-speed CMOS buffers and inverters
- D-Y delay = 7 ns typical
- Low standby power
- JEDEC FCT-compatible specs

- IOI = 24 mA, Commercial and Military
- 200-mV typical hysteresis on data input ports
- Am29C900 DIP pinout option reduces lead inductance on V_{CC} and GND pins

GENERAL DESCRIPTION

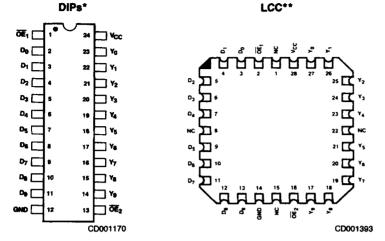

The Am29C827 and Am29C828 CMOS Bus Buffers provide high-performance bus interface buffering for wide address/data paths or buses carrying parity. Both devices feature 10-bit wide data paths and NORed output enables for maximum control flexibility. The Am29C827 has non-inverting outputs, while the Am29C828 has inverting outputs. Each device has data inputs with 200-mV typical input hysteresis to provide improved noise immunity. The Am29C827 and Am29C828 are produced with AMD's exclusive CS-11 CMOS process, and feature typical propa-

gation delays of 7 ns, as well as an output current drive of 24 mA.


The Am29C827 and Am29C828 are available in the standard package options: DIPs, PLCCs, LCCs, SOICs, and Flatpacks. In addition, a DIP pinout option, featuring center $V_{\rm CC}$ and GND pins, reduces the lead inductance of the $V_{\rm CC}$ and GND pins. The ordering part numbers for CMOS buffers with this pinout are the Am29C927 and Am29C928; their pinouts are shown later in this data sheet.

BLOCK DIAGRAMS

Am29C827 (Noninverting)


Am29C828 (inverting)

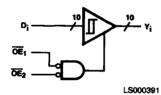
BD001093

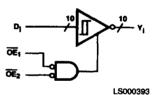
CONNECTION DIAGRAMS Top View

Am29C827/Am29C828

*Also available in 24-Pin Flatpack and Small Outline packages; pinout identical to DIPs. **Also available in 28-Pin PLCC; pinout identical to LCC.

Am29C927/ Am29C928


DIPs


CD010718

LOGIC SYMBOLS

Am29C827

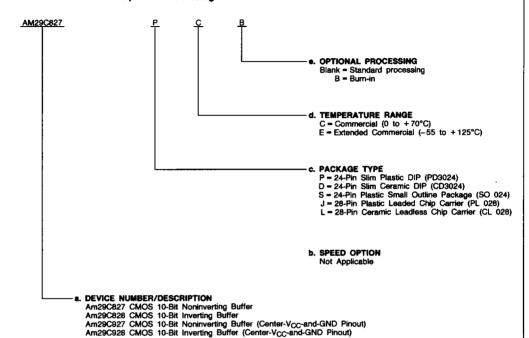
Am29C828

FUNCTION TABLES

Am29C827

	Inputs		Outputs	
ŌE ₁	ŌE ₂	Di	Yi	Function
L	L	Н	Н	Transparent
L	L	L	L	Transparent
Х	Н	Х	Z	Hi-Z
Н	х	Х	Ž	Hi-Z

Am29C828


	Inputs			Outputs	
	ŌE ₁	ŌE ₂	Di	Yi	Function
ſ	L	L	Н	L	Transparent
ſ	L	Ĺ	L	Н	Transparent
ſ	х	Н	X	Z	Hi-Z
	н	Х	Х	Z	Hi-Z

H = HIGH L = LOW X = Don't Care Z = Hi-Z

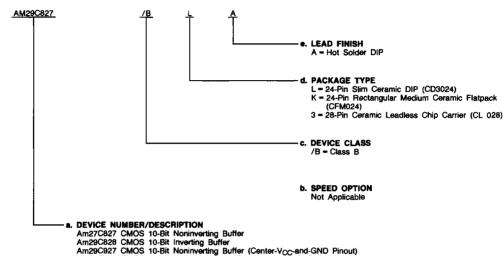
ORDERING INFORMATION Standard Products

AMD products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of: a. Device Number

- b. Speed Option (if applicable)
- c. Package Type
- d. Temperature Range
- e. Optional Processing

Valid Combinations					
AM29C827	PC, PCB, DC, DCB,				
AM29C828	DE, SC, JC, LC				
AM29C927	PC, PCB, DC, DCB,				
AM29C928	DE				

Valid Combinations


Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations, to check on newly released valid combinations, and to obtain additional data on AMD's standard military grade products.

ORDERING INFORMATION (Cont'd.)

APL Products

AMD products for Aerospace and Defense applications are available in several packages and operating ranges. APL (Approved Products List) products are fully compliant with MIL-STD-883C requirements. The order number (Valid Combination) for APL products is formed by a combination of: a. Device Number

- b. Speed Option (if applicable)
- c. Device Class
- d. Package Type
- e. Lead Finish

Valid Combinations				
AM29C827	/BLA. /BKA. /B3A			
AM29C828	70LA, 70KA, 703A			
AM29C927	/BLA .			
AM29C928	7866			

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations or to check for newly released valid combinations.

Group A Tests

Group A tests consist of Subgroups 1, 2, 3, 7, 8, 9, 10, 11.

PIN DESCRIPTION

Am29C928 CMOS 10-Bit Inverting Buffer (Center-V_{CC}-and-GND Pinout)

Output Enables (Input, Active LOW)

When \overline{OE}_1 and \overline{OE}_2 are both LOW, the outputs are enabled. When either one or both are HIGH, the outputs are in the Hi-Z state.

Data Inputs (Input)

Di are the 10-bit data inputs.

Y_i Data Output (Output).

Y_i are the 10-bit data outputs.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature65 to +150°C Supply Voltage to Ground Potential
Continuous
DC Output Voltage0.5 V to V _{CC} + 0.5 V
DC Input Voltage0.5 V to V _{CC} + 0.5 V
DC Output Diode Current: Into Output +50 mA
Out of Output
DC Input Diode Current: Into Input + 20 mA
Out of Input20 mA
DC Output Current per Pin:
SINK+48 mA (2 x IOL)
SOURCE
Total DC Ground Current .(n x I _{OL} + m x I _{CCT}) mA (Note 1)
Total DC V _{CC} Current (n x I _{OH} + m x I _{CCT}) mA (Note 1)
Total DC Ground Current .(n x I _{OL} + m x I _{CCT}) mA (Note 1)

Stresses above those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices
Temperature (T _A) 0 to +70°C
Supply Voltage (V _{CC}) +4.5 V to +5.5 V
Military (M) and Extended Commercial (E) Devices
Temperature (T _A)55 to +125°C
Supply Voltage (V _{CC}) +4.5 V to +5.5 V
Operating ranges define those limits between which the

functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified (for APL Products, Group A, Subgroups 1, 2, 3 are tested unless otherwise noted)

Parameter Symbol	Parameter Description	Test	Conditions		Min.	Max.	Units
VOH	Output HIGH Voltage	V _{CC} = 4.5 V V _{IN} = V _{IH} or V _{IL}	I _{OH} = -15 mA	·	2.4		Volts
VOL	Output LOW Voltage	V _{CC} = 4.5 V V _{IN} = V _{IH} or V _{IL}				0.5	Volts
V _{IH}	Input HIGH Voltage	Guaranteed Input Logic Voltage for All Inputs (I			2.0		Volts
VIL	Input LOW Voltage	Guaranteed Input Logic Voltage for All Inputs (I				8.0	Volts
VI	Input Clamp Voltage	V _{CC} = 4.5 V, I _{IN} = -18	mA			-1.2	Volts
lı.	Input LOW Current	V _{CC} = 5.5 V, V _{IN} = GND				-10	μΑ
110		V _{CC} = 5.5 V, V _{IN} = 0.4 V				-5	
1111	Input HIGH Current	V _{CC} = 5.5 V, V _{IN} = 2.7 V				5	μА
· · · · · · · · · · · · · · · · · · ·	mps. men semen	V _{CC} = 5.5 V, V _{IN} = 5.5 V				10	[
loz u	Output Off-State Current	V _{CC} = 5.5 V, V ₀ = 5.5 V	or 2.7 V (Note	3)		+10	μА
IOZL	(High Impedance)	V _{CC} = 5.5 V, V ₀ = 0.4 V	or GND (Note	3)		-10	μА
^I sc	Output Short-Circuit Current	V _{CC} = 5.5 V, V ₀ = 0 V (Note 4)		-60		mA	
lana	- Static Supply Current	V _{CC} = 5.5 V Outputs Open	V _{IN} ≈ V _{CC} or GND	MIL		160	
Icca				COM'L		120	μΑ
1			V _{IN} = 3.4 V	Data Input		1.5	mA/Bit
ССТ		VIN = 3.4 V		ŌĒ ₁ , ŌĒ ₂		3.0	"!!*/
lccp+	Dynamic Supply Current	V _{CC} = 5.5 V (Note 5)				275	μΑ/MHz/ Bit

Notes: 1. n = number of outputs, m = number of inputs.

- number of outputs, m = number of inputs.

 2. Input thresholds are tested in combination with other DC parameters or by correlation.

 3. Off-state currents are only tested at worst-case conditions of V_{OUT} = 5.5 V or 0.0 V.

 4. Not more than one output should be shorted at a time. Duration should not exceed 100 milliseconds.

 5. Measured at a frequency ≤ 10 MHz with 50% duty cycle.

[†] Not included in Group A tests.

SWITCHING CHARACTERISTICS over operating range unless otherwise specified (for APL Products, Group A, Subgroups 9, 10, 11 are tested unless otherwise noted)

Parameter Symbol	Parameter Description	Test Conditions*	COMMERCIAL		MILITARY		
			Min.	Max.	Min.	Max.	Units
t _{PLH}	Data (D _i) to Output (Y _i) Am29C827 (Noninverting)			10		12	ns
t _{PHL}			j	10		12	ns
t _{PLH}	Data (D _i) to Output (Y _i) Am29C828 (Inverting)	C_L = 50 pF R ₁ = 500 Ω R ₂ = 500 Ω	,	10		12	ns
t _{PHL}				10		12	ns
tzH	Output Enable Time OE to Yi			13		15	ns
tzL				13		15	ns
t _{HZ}	Output Disable Time OE to Yi			13		15	ns
tLZ	Output Disable Time OE to 1;			13		15	ns

^{*}See Test Circuit and Waveforms.