ON Semiconductor

Is Now

To learn more about onsemi™, please visit our website at www.onsemi.com

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application,

1-of-8 **Decoder/Demultiplexer**

The MC74AC151/74ACT151 is a high-speed 8-input digital multiplexer. It provides, in one package, the ability to select one line of data from up to eight sources. The MC74AC151/74ACT151 can be used as a universal function generator to generate any logic function of four variables. Both true and complementary outputs are provided.

- Outputs Source/Sink 24 mA
- 'ACT151 Has TTL Compatible Inputs

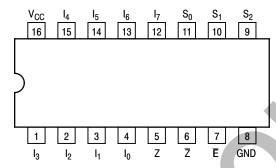


Figure 1. Pinout: 16-Lead Packages Conductors (Top View)

PIN ASSIGNMENT

PIN	FUNCTION
I ₀ -I ₇	Data Inputs
S ₀ -S ₂	Select Inputs
Ē	Enable Input
Z	Data Output
Z	Inverted Data Output

TRUTH TABLE

	Inp	Out	outs		
Ē	S ₂	S ₁	S ₀	Z	Z
Н	Х	Х	X	Н	L
L	L	L	L	Ī ₀	Io
L	L	L	Н	Ī ₁	I ₁
L	L	Н	L	Ī ₂	l ₂
L	L	Н	Н	Ī ₃	l ₃
L	Н	L	L	Ī ₄	I_4
L	Н	L	Н	Ī ₅	l ₅
L	Н	Н	L	Ī ₆	I ₆
L	Н	Н	Н	Ī ₇	l ₇

H = HIGH Voltage Level L = LOW Voltage Level

X = Immaterial

ON Semiconductor™

http://onsemi.com

DIP-16 N SUFFIX CASE 648

SO-16 D SUFFIX CASE 751B

TSSOP-16 DT SUFFIX CASE 948F

EIAJ-16 M SUFFIX CASE 966

ORDERING INFORMATION

Device	Package	Shipping					
MC74AC151N	PDIP-16	25 Units/Rail					
MC74ACT151N	PDIP-16	25 Units/Rail					
MC74AC151D	SOIC-16	48 Units/Rail					
MC74ACT151D	SOIC-16	48 Units/Rail					
MC74AC151DR2	SOIC-16	2500 Tape & Reel					
MC74ACT151DR2	SOIC-16	2500 Tape & Reel					
MC74AC151DT	TSSOP-16	96 Units/Rail					
MC74ACT151DT	TSSOP-16	96 Units/Rail					
MC74AC151DTR2	TSSOP-16	2500 Tape & Reel					
MC74ACT151DTR2	TSSOP-16	2500 Tape & Reel					
MC74AC151M	EIAJ-16	50 Units/Rail					
MC74ACT151M	EIAJ-16	50 Units/Rail					

DEVICE MARKING INFORMATION

See general marking information in the device marking section on page 7 of this data sheet.

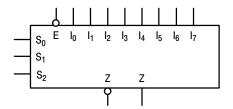


Figure 2. Logic Symbol

FUNCTIONAL DESCRIPTION

The MC74AC151/74ACT151 is a logic implementation of a single pole, 8–position switch with the switch position controlled by the state of three Select inputs, S_0 , S_1 , S_2 . Both true and complementary outputs are provided. The Enable input (\overline{E}) is active LOW. When it is not activated, the complementary output is HIGH and the true output is LOW regardless of all other inputs. The logic function provided at the output is:

$$Z = \overline{E} \cdot (I_0 \cdot \overline{S}_0 \cdot \overline{S}_1 \cdot \overline{S}_2 + I_1 \cdot S_0 \cdot \overline{S}_1 \cdot \overline{S}_2 + I_2 \cdot \overline{S}_0 \cdot S_1 \cdot \overline{S}_2 + I_3 \cdot S_0 \cdot S_1 \cdot \overline{S}_2 + I_4 \cdot \overline{S}_0 \cdot \overline{S}_1 \cdot S_2 + I_5 \cdot S_0 \cdot \overline{S}_1 \cdot S_2 + I_6 \cdot \overline{S}_0 \cdot S_1 \cdot S_2 + I_7 \cdot S_0 \cdot S_1 \cdot S_2)$$

The MC74AC151/74ACT151 provides the ability, in one package, to select from eight sources of data or control information. By proper manipulation of the inputs, the MC74AC151/74ACT151 can provide any logic function of four variables and its complement,

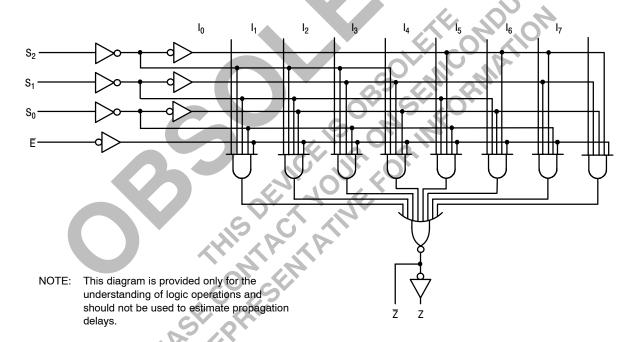


Figure 3. Logic Diagram

MAXIMUM RATINGS*

Symbol	Parameter	Value	Unit
V _{CC}	DC Supply Voltage (Referenced to GND)	-0.5 to +7.0	V
V _{IN}	DC Input Voltage (Referenced to GND)	-0.5 to V _{CC} +0.5	V
V _{OUT}	DC Output Voltage (Referenced to GND)	-0.5 to V _{CC} +0.5	V
I _{IN}	DC Input Current, per Pin	±20	mA
I _{OUT}	DC Output Sink/Source Current, per Pin	±50	mA
Icc	DC V _{CC} or GND Current per Output Pin	±50	mA
T _{stg}	Storage Temperature	-65 to +150	°C

^{*}Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the Recommended Operating Conditions.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Min	Тур	Max	Unit
V _{CC}	Supply Voltage	'AC	2.0	5.0	6.0	V
v CC	Supply Voltage	'ACT	4.5	5.0	5.5	V
V_{IN} , V_{OUT}	DC Input Voltage, Output Voltage (Ref. to GND)		0	-	V _{CC}	V
		V _{CC} @ 3.0 V	/.	150	1	
$t_{r},\ t_{f}$	Input Rise and Fall Time (Note 1) 'AC Devices except Schmitt Inputs	V _{CC} @ 4.5 V	-	40	O '-	ns/V
		V _{CC} @ 5.5 V	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	25	-	
	Input Rise and Fall Time (Note 2)	V _{CC} @ 4.5 V		10	-	70 N
t _r , t _f	'ACT Devices except Schmitt Inputs	V _{CC} @ 5.5 V		8.0	-	ns/V
TJ	Junction Temperature (PDIP)	0.7	3-0	7 -	140	°C
T _A	Operating Ambient Temperature Range	10 0	-40	25	85	°C
I _{OH}	Output Current - High	V .Q.	% -	_	-24	mA
I _{OL}	Output Current - Low	70,00) -	_	24	mA
1. V _{IN} from 3	Output Current – Low 30% to 70% V _{CC} ; see individual Data Sheets for devices to 2.0 V; see individual Data Sheets for devices to	es that differ from hat differ from the	n the typical ir e typical inpu	nput rise and tall	fall times. times.	

DC CHARACTERISTICS

			74	AC	74AC		
Symbol	Parameter	V _{CC} (V)	T _A = +25°C		T _A = -40°C to +85°C	Unit	Conditions
			Тур	Guar	anteed Limits		
V _{IH}	Minimum High Level Input Voltage	3.0 4.5 5.5	1.5 2.25 2.75	2.1 3.15 3.85	2.1 3.15 3.85	V	V _{OUT} = 0.1 V or V _{CC} – 0.1 V
V _{IL}	Maximum Low Level Input Voltage	3.0 4.5 5.5	1.5 2.25 2.75	0.9 1.35 1.65	0.9 1.35 1.65	V	V _{OUT} = 0.1 V or V _{CC} – 0.1 V
V _{OH}	Minimum High Level Output Voltage	3.0 4.5 5.5	2.99 4.49 5.49	2.9 4.4 5.4	2.9 4.4 5.4	V	I _{OUT} = -50 μA
		3.0 4.5 5.5	-	2.56 3.86 4.86	2.46 3.76 4.76	V	$^{*}V_{IN}$ = V_{IL} or V_{IH} -12 mA $_{OH}$ -24 mA $_{-24}$ mA
V _{OL}	Maximum Low Level Output Voltage	3.0 4.5 5.5	0.002 0.001 0.001	0.1 0.1 0.1	0.1 0.1 0.1		Ι _{ΟUΤ} = 50 μΑ
		3.0 4.5 5.5	- - -	0.36 0.36 0.36	0.44 0.44 0.44		$^{*}V_{IN} = V_{IL} \text{ or } V_{IH}$ 12 mA $I_{OL} \qquad 24 \text{ mA}$ 24 mA
I _{IN}	Maximum Input Leakage Current	5.5	S	±0.1	±1.0	μΑ	V _I = V _{CC} , GND
I _{OLD}	†Minimum Dynamic	5.5	<i></i>	2	75	mA	V _{OLD} = 1.65 V Max
I _{OHD}	Output Current	5.5	4	-/	-75	mA	V _{OHD} = 3.85 V Min
I _{CC}	Maximum Quiescent Supply Current	5.5		8.0	80	μΑ	V _{IN} = V _{CC} or GND

^{*}All outputs loaded; thresholds on input associated with output under test.

ess than or eq NOTE: I_{IN} and I_{CC} @ 3.0 V are guaranteed to be less than or equal to the respective limit @ 5.5 V V_{CC}.

[†]Maximum test duration 2.0 ms, one output loaded at a time.

AC CHARACTERISTICS (For Figures and Waveforms – See Section 3 of the ON Semiconductor FACT Data Book, DL138/D)

				74AC		74.	AC		
Symbol	Parameter	V _{CC} * (V)	T _A = +25°C C _L = 50 pF		· 1 to 185.(.		85°C	Unit	Fig. No.
			Min	Тур	Max	Min	Max		
t _{PLH}	Propagation Delay S_n to Z or \overline{Z}	3.3 5.0	3.0 2.5	11.5 8.5	18.0 13.0	3.0 2.0	20.0 15.0	ns	3–6
t _{PHL}	Propagation Delay S_n to Z or \overline{Z}	3.3 5.0	2.5 2.0	12 8.5	18.0 13.0	2.5 1.5	20.0 15.0	ns	3–6
t _{PLH}	Propagation Delay E to Z or Z	3.3 5.0	2.5 2.0	8.0 6.0	13.0 10.0	2.0 1.5	14.0 11.0	ns	3–6
t _{PHL}	Propagation Delay E to Z or Z	3.3 5.0	1.5 1.5	8.5 6.5	13.0 10.0	1.5 1.5	14.0 11.0	ns	3–6
t _{PLH}	Propagation Delay I_n to Z or \overline{Z}	3.3 5.0	2.5 1.5	9.5 7.0	14.0 10.5	2.0 1.5	15.5 11.0	ns	3–5
t _{PHL}	Propagation Delay I_n to Z or \overline{Z}	3.3 5.0	2.5 1.5	9.5 7.0	15.0 11.0	2.0 1.5	16.0 12.0	ns	3–5

^{*}Voltage Range 3.3 V is 3.3 V \pm 0.3 V

DC CHARACTERISTICS

			74₽	CT	74ACT	10	
Symbol	Parameter	V _{CC} (V)	T _A = +25°C		T _A = -40°C to +85°C	Unit	Conditions
			Тур	Guar	anteed Limits		
V _{IH}	Minimum High Level Input Voltage	4.5 5.5	1.5 1.5	2.0 2.0	2.0 2.0	٧	V _{OUT} = 0.1 V or V _{CC} – 0.1 V
V _{IL}	Maximum Low Level Input Voltage	4.5 5.5	1.5 1.5	0.8 0.8	0.8 0.8	V	V _{OUT} = 0.1 V or V _{CC} – 0.1 V
V _{OH}	Minimum High Level Output Voltage	4.5 5.5	4.49 5.49	4.4 5.4	4.4 5.4	>	I _{OUT} = -50 μA
	COM	4.5 5.5	- -	3.86 4.86	3.76 4.76	٧	$*V_{IN} = V_{IL} \text{ or } V_{IH}$ I_{OH} -24 mA -24 mA
V _{OL}	Maximum Low Level Output Voltage	4.5 5.5	0.001 0.001	0.1 0.1	0.1 0.1	٧	Ι _{ΟUT} = 50 μΑ
	Maximum Low Level Output Voltage	4.5 5.5	-	0.36 0.36	0.44 0.44	V	$*V_{IN} = V_{IL} \text{ or } V_{IH}$ I_{OL} 24 mA 24 mA
I _{IN}	Maximum Input Leakage Current	5.5	-	±0.1	±1.0	μΑ	$V_I = V_{CC}$, GND
ΔI_{CCT}	Additional Max. I _{CC} /Input	5.5	0.6	-	1.5	mA	$V_{I} = V_{CC} - 2.1 \text{ V}$
I _{OLD}	†Minimum Dynamic	5.5	-	-	75	mA	V _{OLD} = 1.65 V Max
I _{OHD}	Output Current	5.5	_	-	-75	mA	V _{OHD} = 3.85 V Min
I _{CC}	Maximum Quiescent Supply Current	5.5		8.0	80	μΑ	V _{IN} = V _{CC} or GND

^{*}All outputs loaded; thresholds on input associated with output under test.

^{*}Voltage Range 5.0 V is 5.0 V ± 0.5 V

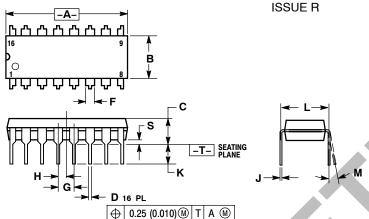
[†]Maximum test duration 2.0 ms, one output loaded at a time.

AC CHARACTERISTICS (For Figures and Waveforms – See Section 3 of the ON Semiconductor FACT Data Book, DL138/D)

				74ACT		74	CT		
Symbol	Parameter		T _A = +25°C C _L = 50 pF			T _A = -40°C to +85°C C _L = 50 pF		Unit	Fig. No.
			Min	Тур	Max	Min	Max		
t _{PLH}	Propagation Delay S _n to Z	5.0	3.5	_	15.5	3.0	17.0	ns	3–6
t _{PHL}	Propagation Delay S _n to Z	5.0	3.5	_	15.5	3.0	16.5	ns	3–6
t _{PLH}	Propagation Delay S_n to \overline{Z}	5.0	3.5	-	15	3.0	16.5	ns	3–6
t _{PHL}	Propagation Delay S_n to \overline{Z}	5.0	4.0		16.5	3.5	18.5	ns	3–6
t _{PLH}	Propagation Delay E to Z	5.0	2.5		9.5	2.5	10.0	ns	3–6
t _{PHL}	Propagation Delay E to Z	5.0	2.5	-	9.0	2.5	10.0	ns	3–6
t _{PLH}	Propagation Delay E to Z	5.0	2.5	-	8.5	2.5	9.5	ns	3–6
t _{PHL}	Propagation Delay E to Z	5.0	3.0	-	10.0	2.5	10.5	ns	3–6
t _{PLH}	Propagation Delay I _n to Z	5.0	3.5	1-1	11.5	3.0	12.5	ns	3–6
t _{PHL}	Propagation Delay In to Z	5.0	3.5		12.0	3.0	13.5	ns	3–6
t _{PLH}	Propagation Delay I_n to \overline{Z}	5.0	3.5) - ·	12.0	3.0	13.0	ns	3–6
t _{PHL}	Propagation Delay I_n to \overline{Z}	5.0	4.0	(P-	12.5	3.0	14.0	ns	3–6

^{*}Voltage Range 5.0 V is 5.0 V \pm 0.5 V

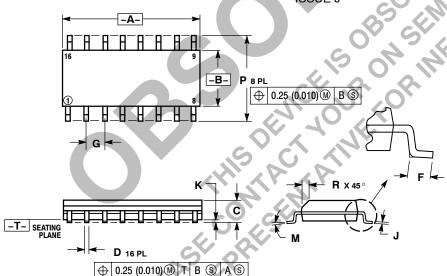
CAPACITANCE


Symbol	Parameter	Value Typ	Unit	Test Conditions
C _{IN}	Input Capacitance	4.5	pF	V _{CC} = 5.0 V
C _{PD}	Power Dissipation Capacitance	70	pF	V _{CC} = 5.0 V

MARKING DIAGRAMS

DIP-16 SO-16 TSSOP-16 EIAJ-16 88888888 Π Π Π Π Π Π Π Π 8888888 AC151 AWLYWW MC74AC151N 74AC151 AC AWLYYWW 151 ALYW ប៉ុបបូបបូបបូប **ALYW** <u>Ŭ U U U U U U U</u> 88888888 88888888 AAAAAAAA MC74ACT151N ACT151 AWLYWW 74ACT151 ACT o AWLYYWW ALYW 151 ŬIJIJIJIJIJ **ALYW** PIERSE OF SERVE OF THE PRESENTATIVE OF THE PRE HHHHHHH

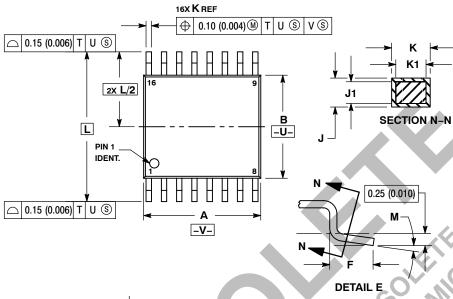
PACKAGE DIMENSIONS


PDIP-16 **N SUFFIX** 16 PIN PLASTIC DIP PACKAGE CASE 648-08

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI
- 714.5M, 1982.
 CONTROLLING DIMENSION: INCH.
 DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL
- DIMENSION B DOES NOT INCLUDE MOLD FLASH.
 ROUNDED CORNERS OPTIONAL.

		INC	HES	MILLIN	IETERS
L	DIM	MIN	MAX	MIN	MAX
	Α	0.740	0.770	18.80	19.55
	В	0.250	0.270	6.35	6.85
	С	0.145	0.175	3.69	4.44
νĮ	D	0.015	0.021	0.39	0.53
1	F.	0.040	0.70	1.02	1.77
	G	0.100	BSC	2.54	BSC
Ā	H	0.050	BSC	1.27	BSC
Γ	J	0.008	0.015	0.21	0.38
	K	0.110	0.130	2.80	3.30
	L	0.295	0.305	7.50	7.74
	M	0°	10 °	0°	10 °
	S	0.020	0.040	0.51	1.01

SO-16 **D SUFFIX** 16 PIN PLASTIC SOIC PACKAGE CASE 751B-05 **ISSUE J**


- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI
 Y14.5M, 1982. Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
 DIMENSIONS A AND B DO NOT INCLUDE

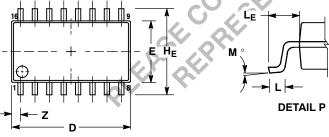
 - MOLD PROTRUSION.
 MAXIMUM MOLD PROTRUSION 0.15 (0.006)
 - PROTRUSION 0.15 (0.006)
 PER SIDE.
 DIMENSION D DOES NOT INCLUDE DAMBAR
 PROTRUSION. ALLOWABLE DAMBAR
 PROTRUSION SHALL BE 0.127 (0.005) TOTAL
 IN EXCESS OF THE D DIMENSION AT
 MAXIMUM MATERIAL CONDITION.

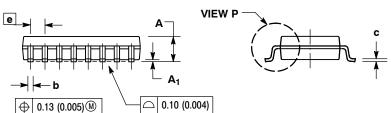
	MILLIN	IETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	9.80	10.00	0.386	0.393
В	3.80	4.00	0.150	0.157
С	1.35	1.75	0.054	0.068
D	0.35	0.49	0.014	0.019
F	0.40	1.25	0.016	0.049
G	1.27	BSC	0.050	BSC
J	0.19	0.25	0.008	0.009
K	0.10	0.25	0.004	0.009
M	0°	7°	0°	7°
P	5.80	6.20	0.229	0.244
R	0.25	0.50	0.010	0.019

PACKAGE DIMENSIONS

TSSOP-16 **DT SUFFIX** 16 PIN PLASTIC TSSOP PACKAGE CASE948F-01 **ISSUE O**

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI
 - Y14.5M, 1982. CONTROLLING DIMENSION: MILLIMETER.
- DIMENSION A DOES NOT INCLUDE MOLD FLASH.
 PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
 DIMENSION B DOES NOT INCLUDE INTERLEAD
- DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. DIMENSION K DOES NOT INCLUDE DAMBAR
- DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.


 DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.


	MILLIN	IETERS	INCHES	
DIM	MIN	MAX	MIN	MAX
A	4.90	5.10	0.193	0.200
В	4.30	4.50	0.169	0.177
C		1.20		0.047
D (0.05	0.15	0.002	0.006
E	0.50	0.75	0.020	0.030
G	0.65 BSC		0.026 BSC	
H	0.18	0.28	0.007	0.011
J	0.09	0.20	0.004	0.008
J1	0.09	0.16	0.004	0.006
K	0.19	0.30	0.007	0.012
K1	0.19	0.25	0.007	0.010
L	6.40 BSC		0.252 BSC	
M	0 °	8°	0 °	8°

EIAJ-16 **M SUFFIX** 16 PIN PLASTIC EIAJ PACKAGE CASE966-01 ISSUE O

 Q_1

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. CONTROLLING DIMENSION: MILLIMETER.
- DIMENSIONS D AND E DO NOT INCLUDE MOLD
 FLASH OR PROTRUSIONS AND ARE MEASURED AT THE PARTING LINE. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.15 (0.006)
- PER SIDE.
 TERMINAL NUMBERS ARE SHOWN FOR
- REFERENCE ONLY.
 THE LEAD WIDTH DIMENSION (b) DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE LEAD WIDTH DIMENSION AT MAXIMUM MATERIAL CONDITION.

 DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE
 BETWEEN PROTRUSIONS AND ADJACENT LEAD TO BE 0.46 (0.018).

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
Α		2.05		0.081
A ₁	0.05	0.20	0.002	0.008
b	0.35	0.50	0.014	0.020
C	0.18	0.27	0.007	0.011
D	9.90	10.50	0.390	0.413
Е	5.10	5.45	0.201	0.215
е	1.27 BSC		0.050 BSC	
HE	7.40	8.20	0.291	0.323
L	0.50	0.85	0.020	0.033
LE	1.10	1.50	0.043	0.059
M	0 °	10 °	0 °	10°
Q ₁	0.70	0.90	0.028	0.035
Z		0.78		0.031

ON Semiconductor and was are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada

Email: orderlit@onsemi.com

N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5773-3850 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative