

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceed the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-35835
 - Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)

• Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

April 1988 Revised October 2000

FAIRCHILD

SEMICONDUCTOR

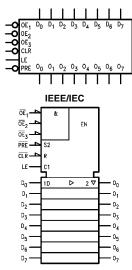
74F845 8-Bit Transparent Latch

General Description

The 74F845 bus interface latch is designed to eliminate the extra packages required to buffer existing latches and provide extra data width for wider address/data paths or buses carrying parity.

The 74F845 is functionally- and pin-compatible with AMD's Am29845.

Ordering Code:


Order Number	Package Number	Package Description
74F845SC	M24B	24-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide
74F845SPC	N24C	24-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide
Devices also suchable	in Trans and Deal Onesite	the appending the suffix latter "V" to the ordering code

Features

■ 3-STATE outputs

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Logic Symbols

Connection Diagram

■ Direct replacement for AMD's Am29845

ŌE1-	1	\bigcirc	24	- V
				- v _{cc}
0E2	2		23	- 0E3
D ₀ —	3		22	- 0 ₀
D1-	4		21	-0 ₁
D ₂ —	5		20	-0 ₂
D3 -	6		19	-03
D4 —	7		18	-0 ₄
D ₅ —	8		17	-0 ₅
D ₆ —	9		16	-0 ₆
D ₇ —	10		15	-0 ₇
CLR -	11		14	- PRE
GND —	12		13	—LE

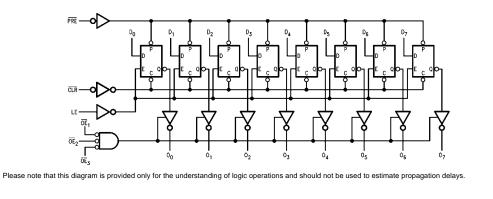
© 2000 Fairchild Semiconductor Corporation DS009601

Unit Loading/Fan Out

_				
Din Nomes	Description	U.L.	Input I _{IH} /I _{IL}	
Pin Names	Description	HIGH/LOW	Output I _{OH} /I _{OL}	
D ₀ -D ₇	Data Inputs	1.0/1.0	20 µA/–0.6 mA	
O ₀ –O ₇	Data Outputs	150/40	–3.0 μA/24 mA	
OE ₁ -OE ₃	Output Enables	1.0/1.0	20 µA/–0.6 mA	
LE	Latch Enable	1.0/1.0	20 µA/–0.6 mA	
CLR	Clear	1.0/1.0	20 µA/–0.6 mA	
PRE	Preset	1.0/1.0	20 µA/–0.6 mA	

Functional Description

The 74F845 consists of eight D-type latches with 3-STATE outputs. The flip-flops appear transparent to the data when Latch Enable (LE) is HIGH. This allows asynchronous operation as the output transition follows the data in transition. On the LE HIGH-to-LOW transition, the data that meets the setup times is latched. Data appears on the bus when the output Enable (OE) is LOW. When OE is HIGH, the bus output is in the high impedance state.


	l	nputs			Internal	Output	Function
CLR	PRE	OE	LE	D	Q	0	Function
Н	Н	Н	Х	Х	Х	Z	High Z
н	н	н	н	L	L	Z	High Z
н	н	н	н	н	н	Z	High Z
н	н	н	L	Х	NC	Z	Latched
н	Н	L	Н	L	L	L	Transparent
н	Н	L	Н	н	н	н	Transparent
н	н	L	L	х	NC	NC	Latched
н	L	L	Х	х	н	н	Preset
L	Н	L	Х	х	L	L	Clear
L	L	L	Х	х	н	н	Preset
L	н	н	L	х	L	Z	Latched
н	L	н	L	Х	н	Z	Latched
H = HI0	H = HIGH Voltage Level Z = High Impedance						

H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial

Function Table

NC = No Change

Absolute Maximum Ratings(Note 1)

Storage Temperature Ambient Temperature under Bias Junction Temperature under Bias V_{CC} Pin Potential to Ground Pin Input Voltage (Note 2) Input Current (Note 2) Voltage Applied to Output in HIGH State (with V_{CC} = 0V) Standard Output 3-STATE Output Current Applied to Output in LOW State (Max)

-65°C to +150°C -55°C to +125°C -55°C to +150°C -0.5V to +7.0V -0.5V to +7.0V -30 mA to +5.0 mA

–0.5V to V_{CC}

-0.5V to +5.5V

twice the rated I_{OL} (mA)

Recommended Operating Conditions

Free Air Ambient Temperature Supply Voltage

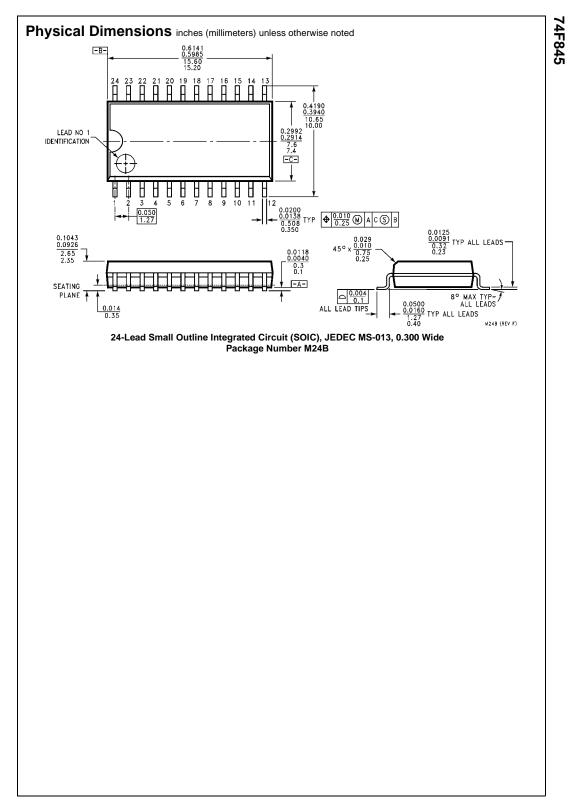
0°C to +70°C +4.5V to +5.5V 74F845

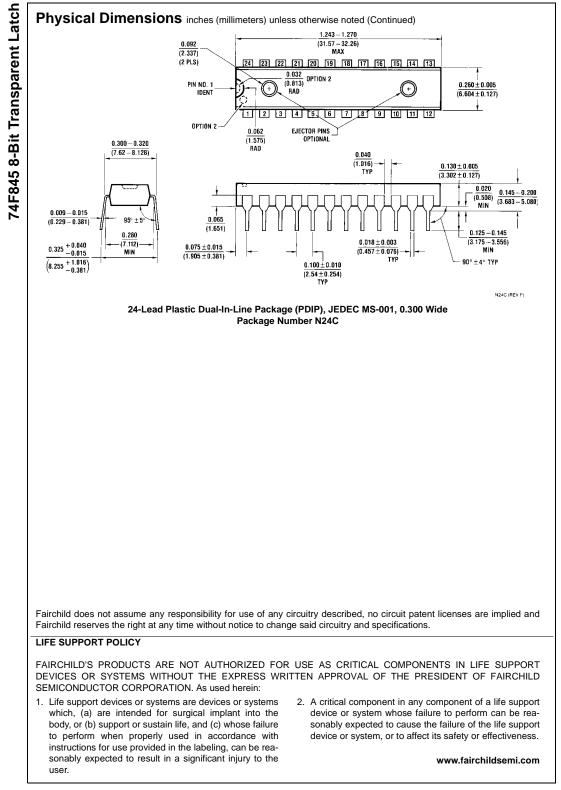
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics

Symbol Parameter Min Vcc Conditions Тур Max Units Input HIGH Voltage 2.0 V Recognized as a HIGH Signal VIH V_{IL} Input LOW Voltage 0.8 V Recognized as a LOW Signal V_{CD} Input Clamp Diode Voltage -1.2 V Min $I_{IN} = -18 \text{ mA}$ $I_{OH} = -1 \text{ mA}$ Output HIGH 25 10% V_{CC} VOH $I_{OH} = -3 \text{ mA}$ Voltage 10% V_{CC} 2.4 V Min $I_{OH} = -1 \text{ mA}$ $5\% V_{CC}$ 2.7 $I_{OH} = -3 \text{ mA}$ 5% V_{CC} 2.7 10% V_{CC} $I_{OL} = 24 \text{ mA}$ Output LOW Voltage 0.5 V Min VOL Input HIGH Current $V_{IN} = 2.7V$ $I_{\rm H}$ 5.0 μΑ Max Input HIGH Current I_{BVI} 7.0 μA Max $V_{IN} = 7.0V$ Breakdown Test ICEX Output HIGH 50 μΑ Max $V_{OUT} = V_{CC}$ Leakage Current $I_{ID} = 1.9 \ \mu A$ V_{ID} Input Leakage 4.75 V 0.0 All Other Pins Grounded Test Output Leakage $V_{IOD} = 150 \text{ mV}$ IOD 3.75 μΑ 0.0 All Other Pins Grounded Circuit Current $V_{IN}=0.5V$ Input LOW Current -0.6 mΑ Max $I_{\rm IL}$ V_{OUT} = 2.7V Output Leakage Current 50 Max I_{OZH} μA Output Leakage Current -50 Max V_{OUT} = 0.5V μΑ I_{OZL} Output Short-Circuit Current -60 -150 mΑ Max $V_{OUT} = 0V$ los Bus Drainage Test 500 μΑ 0.0V V_{OUT} = 5.25V I_{ZZ} V_O = HIGH Z Power Supply Current 63 85 Max I_{CCZ} mΑ


74F845


AC Electrical Characteristics

Symbol	Parameter	$T_A = +25^{\circ}C$ $V_{CC} = +5.0V$ $C_L = 50 \text{ pF}$			$T_{A}=0^{\circ}C \text{ to } +70^{\circ}C$ $V_{CC}=+5.0V$ $C_{L}=50 \text{ pF}$		Units	
		Min	Тур	Max	Min	Max	1	
t _{PLH}	Propagation Delay	2.5	4.8	8.0	2.0	9.0		
t _{PHL}	D _n to O _n	1.5	3.6	6.5	1.5	7.0	ns	
t _{PLH}	Propagation Delay	5.0	8.1	12.0	4.5	13.5		
t _{PHL}	LE to O _n	2.0	4.4	7.5	2.0	8.0	ns	
t _{PLH}	Propagation Delay PRE to O _n	3.0	5.9	10.0	2.5	11.0	ns	
t _{PHL}	Propagation Delay CLR to O _n	3.0	6.5	10.0	2.5	11.0	ns	
t _{PZH}	Output Enable Time	2.5	5.8	9.5	2.0	10.5	ns	
t _{PZL}	OE to On	2.5	7.6	12.0	2.0	13.0		
t _{PHZ}	Output Disable Time	1.0	3.1	7.5	1.0	8.5		
t _{PLZ}	OE to On	1.0	2.8	6.5	1.0	7.5	ns	

AC Operating Requirements

		$T_A = +25^{\circ}C$ $V_{CC} = +5.0V$		$T_A=0^\circ C$ to +70°C $V_{CC}=+5.0V$		Units
Symbol	Parameter					
		Min	Max	Min	Max	
t _S (H)	Setup Time, HIGH or LOW	2.0		2.5		ns
t _S (L)	D _n to LE	2.0		2.5		115
t _H (H)	Hold Time, HIGH or LOW	2.5		3.0		ns
t _H (L)	D _n to LE	3.0		3.5		115
t _W (H)	LE Pulse Width, HIGH	4.0		4.0		ns
t _W (L)	PRE Pulse Width, LOW	5.0		5.0		ns
t _W (L)	CLR Pulse Width, LOW	5.0		5.0		ns
t _{REC}	PRE Recovery Time	10.0		10.0		ns
t _{REC}	CLR Recovery Time	12.0		13.0		ns

