

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceed the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-35835
 - Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
- Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

October 1987 Revised March 2002

CD4043BC • CD4044BC Quad 3-STATE NOR R/S Latches • Quad 3-STATE NAND R/S Latches

General Description

The CD4043BC are quad cross-couple 3-STATE CMOS NOR latches, and the CD4044BC are quad cross-couple 3-STATE CMOS NAND latches. Each latch has a separate Q output and individual SET and RESET inputs. There is a common 3-STATE ENABLE input for all four latches. A logic "1" on the ENABLE input connects the latch states to the Q outputs. A logic "0" on the ENABLE input disconnects the latch states from the Q outputs resulting in an open circuit condition on the Q output. The 3-STATE feature allows common bussing of the outputs.

Features

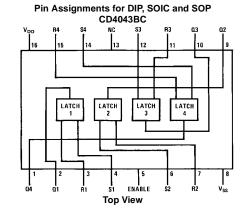
■ Wide supply voltage range: 3V to 15V

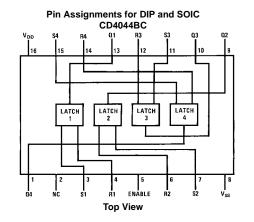
■ Low power: 100 nW (typ.)

■ High noise immunity: 0.45 V_{DD} (typ.)

- Separate SET and RESET inputs for each latch
- NOR and NAND configuration
- 3-STATE output with common output enable

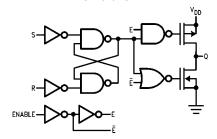
Applications

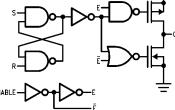

- Multiple bus storage
- Strobed register
- Four bits of independent storage with output enable
- General digital logic


Ordering Code:

Order Number	Package Number	Package Description
CD4043BCM	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
CD4043BCN	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide
CD4044BCM	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
CD4044BCSJ	M16D	16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
CD4044BCN	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.


Connection Diagrams



Block Diagrams

CD4043BC

CD4044BC

Truth Tables

CD4043BC

S	R	Е	Q
Х	Х	0	OC NC
0	0	1	NC
1	0	1	1
0	1	1	0
1	1	1	Δ

CD4044BC

S	R	E	Q
Х	Х	0	OC
1	1	1	NC
0	1	1	1
1	0	1	0
0	0	1	$\Delta\Delta$

OC = 3-STATE NC = No change X = Don't care $\Delta = Dominated by S = 1 input$ $\Delta\Delta = Dominated by R = 0 input$

Absolute Maximum Ratings(Note 1)

(Note 2)

 $\label{eq:Supply Voltage VDD} Supply Voltage (V_{DD}) & -0.5V \text{ to } +18V \\ \text{Input Voltage (V_{IN})} & -0.5V \text{ to } V_{DD} +0.5V \\ \end{cases}$

Storage Temperature Range (Ts) -65°C to +150°C

Power Dissipation (P_D)

Dual-In-Line 700 mW Small Outline 500 mW

Lead Temperature (T_L)

(Soldering, 10 seconds) 260°C

Recommended Operating Conditions

(Note 2)

 $\begin{array}{ll} \mbox{Supply Voltage (V_{DD})} & 3.0 \mbox{V to 15V} \\ \mbox{Input Voltage (V_{IN})} & 0 \mbox{ to V}_{DD} \mbox{ V} \end{array}$

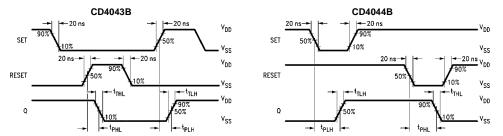
Operating Temperature Range (T_A)

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed; they are not meant to imply that the devices should be operated at these limits. The tables of "Recommended Operating Conditions" and "Electrical Characteristics" provide conditions for actual device operation.

Note 2: $V_{SS} = 0V$ unless otherwise specified.

DC Electrical Characteristics (Note 2)

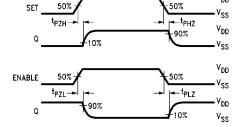
Symbol	Parameter	Conditions	-55	–55°C		+25°C			+125°C	
Symbol		Conditions	Min	Max	Min	Тур	Max	Min	Max	Units
I _{DD}	Quiescent	$V_{DD} = 5V$, $V_{IN} = V_{DD}$ or V_{SS}		5		0.01	5		150	
	Device Current	$V_{DD} = 10V$, $V_{IN} = V_{DD}$ or V_{SS}		10		0.01	10		300	μΑ
		$V_{DD} = 15V$, $V_{IN} = V_{DD}$ or V_{SS}		20		0.02	20		600	
V _{OL}	LOW Level	$ I_{O} \le 1 \mu A, V_{IL} = 0V, V_{IH} = V_{DD}$								
	Output Voltage	$V_{DD} = 5.0V$		0.05		0	0.05		0.05	
		V _{DD} = 10V		0.05		0	0.05		0.05	V
		V _{DD} = 15V		0.05		0	0.05		0.05	
V _{OH}	HIGH Level	$ I_{O} \le 1 \mu A, V_{IL} = 0V, V_{IH} = V_{DD}$								
	Output Voltage	$V_{DD} = 5.0V$	4.95		4.95	5.0		4.95		
		V _{DD} = 10V	9.95		9.95	10		9.95		V
		V _{DD} = 15V	14.95		14.95	15		14.95		
V _{IL}	LOW Level	I _O ≤ 1 μA								
	Input Voltage	$V_{DD} = 5.0V, V_{O} = 0.5V \text{ or } 4.5V$		1.5		2.25	1.5		1.5	
		$V_{DD} = 10V, V_{O} = 1.0V \text{ or } 9.0V$		3.0		4.5	3.0		3.0	V
		$V_{DD} = 15V$, $V_{O} = 1.5V$ or $13.5V$		4.0		6.75	4.0		4.0	
V _{IH}	HIGH Level	I _O ≤ 1 μA								
	Input Voltage	$V_{DD} = 5.0V, V_{O} = 0.5V \text{ or } 4.5V$	3.5		3.5	2.75		3.5		
		$V_{DD} = 5.0V, V_{O} = 1.0V \text{ or } 9.0V$	7.0		7.0	5.5		7.0		V
		$V_{DD} = 15V, V_{O} = 1.5V \text{ or } 13.5V$	11		11	8.25		11		
I _{OL}	LOW Level	$V_{IL} = 0V$, $V_{IH} = V_{DD}$								
	Output Current	$V_{DD} = 5.0V, V_{O} = 0.4V$	0.64		0.51	1.0		0.36		
	(Note 3)	$V_{DD} = 10V, V_{O} = 0.5V$	1.6		1.3	2.6		0.9		mA
		$V_{DD} = 15V, V_{O} = 1.5V$	4.2		3.4	6.8		2.4		
I _{OH}	HIGH Level	$V_{IL} = 0V$, $V_{IH} = V_{DD}$								
	Output Current	$V_{DD} = 5.0V, V_{O} = 4.6V$	-0.64		-0.51	-0.4		-0.36		
	(Note 3)	$V_{DD} = 10V, V_{O} = 9.5V$	-1.6		-1.3	-1.0		-0.9		mA
		$V_{DD} = 15V, V_{O} = 13.5V$	-4.2		-3.4	-3.0		-2.4		
I _{IN}	Input Current	V _{DD} = 15V, V _{IN} = 0V		-0.1		-10.5	-0.1		-1.0	
		$V_{DD} = 15V, V_{IN} = 15V$		0.1		10.5	0.1		1.0	μΑ

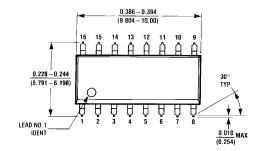

Note 3: I_{OH} and I_{OL} are tested one output at a time.

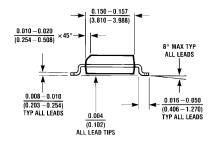
AC Electrical Characteristics (Note 4) $T_A=25^{\circ}C,\,C_L=50\;\text{pF},\,R_L=200k,\,\text{input}\;t_f=t_f=20\;\text{ns, unless otherwise noted}$

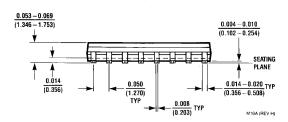
Symbol	Parameter	Conditions	Min	Тур	Max	Units
t _{PLH} , t _{PHL}	Propagation Delay S or R to Q	$V_{DD} = 5.0V$		175	350	
		$V_{DD} = 10V$		75	175	ns
		$V_{DD} = 15V$		60	120	
t _{PZH} , t _{PHZ}	Propagation Delay Enable to Q (HIGH)	$V_{DD} = 5.0V$		115	230	
		$V_{DD} = 10V$		55	110	ns
		$V_{DD} = 15V$		40	80	
t _{PZL} , t _{PLZ}	Propagation Delay Enable to Q (LOW)	$V_{DD} = 5.0V$		100	200	
		$V_{DD} = 10V$		50	100	ns
		V _{DD} = 15V		40	80	
t _{THL} , t _{TLH}	Transition Time	$V_{DD} = 5.0V$		100	200	
		$V_{DD} = 10V$		50	100	ns
		V _{DD} = 15V		40	80	
t _{WO}	Minimum SET or RESET Pulse Width	$V_{DD} = 5.0V$		80	160	
		$V_{DD} = 10V$		40	80	ns
		V _{DD} = 15V		20	40	
C _{IN}	Input Capacitance			5.0	7.5	pF

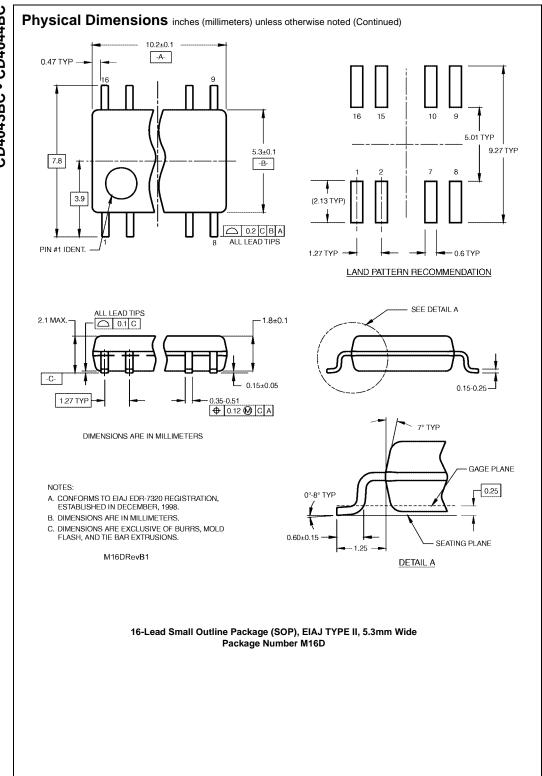
Note 4: AC Parameters are guaranteed by DC correlated testing.

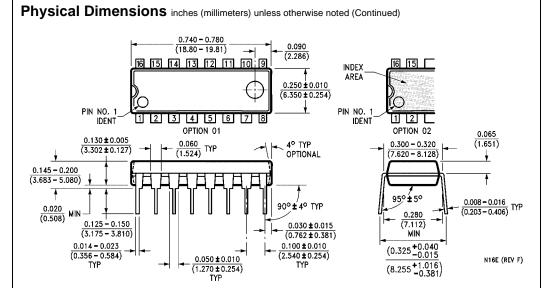

Timing Waveforms


Enable Timing


50%


 \mathbf{v}_{DD}





16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow Package Number M16A

16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide Package Number N16E

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com