RENESAS

R1LV1616HBG-I Series

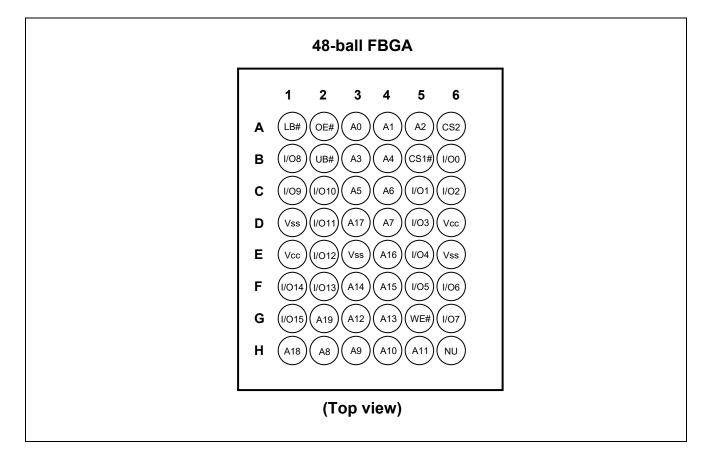
Wide Temperature Range Version 16 M SRAM (1-Mword \times 16-bit)

REJ03C0263-0101 Rev. 1.01 Feb.23.2017

Description

The R1LV1616HBG-I Series is 16-Mbit static RAM organized 1-Mword × 16-bit with embedded ECC. R1LV1616HBG-I Series has realized higher density, higher performance and low power consumption by employing CMOS process technology (6-transistor memory cell). It offers low power standby power dissipation; therefore, it is suitable for battery backup systems. It is packaged in 48-ball plastic FBGA for high density surface mounting.

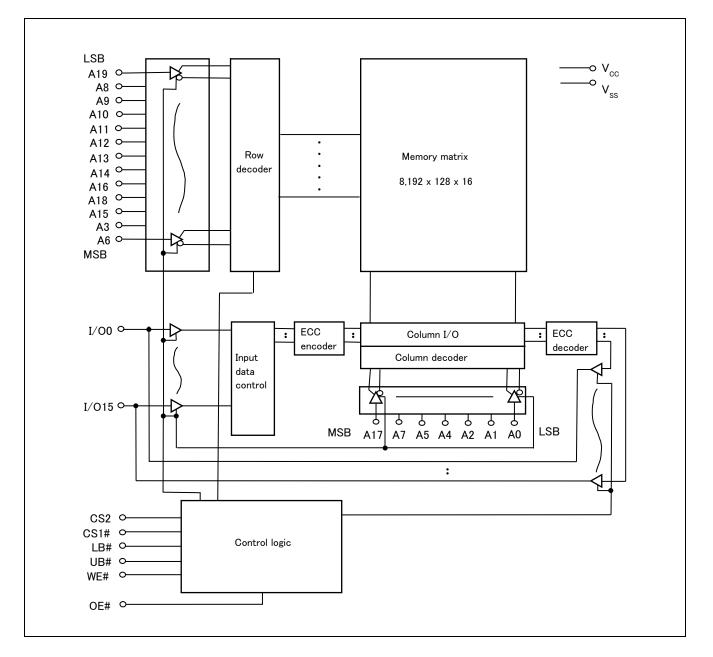
Features


- Single 3.0 V supply: 2.7 V to 3.6 V
- Fast access time: 45/55 ns (max)
- Power dissipation:
 - Active: 9 mW/MHz (typ)
 - Standby: $1.5 \mu W (typ)$
- Completely static memory.
 - No clock or timing strobe required
- Equal access and cycle times
- Common data input and output.
 - Three state output
- Battery backup operation.
 - 2 chip selection for battery backup
- Temperature range: -40 to $+85^{\circ}$ C
- Embedded ECC (error checking and correction) for single-bit error correction

Ordering Information

Type No.	Access time	Package
R1LV1616HBG-4SI	45 ns	48-ball plastic FBGA with 0.75 mm ball pitch
R1LV1616HBG-5SI	55 ns	PTBG0048HF (48FHJ)

Pin Arrangement



Pin Description

Pin name	Function
A0 to A19	Address input
I/O0 to I/O15	Data input/output
CS1# (CS1)	Chip select 1
CS2	Chip select 2
WE# (WE)	Write enable
OE# (OE)	Output enable
LB# (LB)	Lower byte select
UB# (UB)	Upper byte select
Vcc	Power supply
Vss	Ground
NU*1	Not used (test mode pin)

Note: 1. This pin should be connected to a ground (Vss), or not be connected (open).

Block Diagram

Operation Table

CS1#	CS2	WE#	OE#	UB#	LB#	I/O0 to I/O7	I/O8 to I/O15	Operation
Н	×	×	×	×	×	High-Z	High-Z	Standby
×	L	×	×	×	×	High-Z	High-Z	Standby
×	×	×	×	Н	Н	High-Z	High-Z	Standby
L	Н	Н	L	L	L	Dout	Dout	Read
L	Н	Н	L	Н	L	Dout	High-Z	Lower byte read
L	Н	Н	L	L	Н	High-Z	Dout	Upper byte read
L	Н	L	×	L	L	Din	Din	Write
L	Н	L	×	Н	L	Din	High-Z	Lower byte write
L	Н	L	×	L	Н	High-Z	Din	Upper byte write
L	Н	Н	Н	×	×	High-Z	High-Z	Output disable

Note: H: VIH, L: VIL, \times : VIH or VIL

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Power supply voltage relative to V _{SS}	Vcc	-0.5 to +4.6	V
Terminal voltage on any pin relative to Vss	VT	-0.5*1 to V _{CC} + 0.3*2	V
Power dissipation	Рт	1.0	W
Storage temperature range	Tstg	–55 to +125	۵°
Storage temperature range under bias	Tbias	-40 to +85	۵°

Notes: 1. V_T min: -2.0 V for pulse half-width \leq 10 ns.

2. Maximum voltage is +4.6 V.

DC Operating Conditions

Parameter	Symbol	Min	Тур	Max	Unit	Note
Supply voltage	Vcc	2.7	3.0	3.6	V	
	Vss	0	0	0	V	
Input high voltage	Vін	2.2	_	V _{CC} + 0.3	V	
Input low voltage	VIL	-0.3	—	0.6	V	1
Ambient temperature range	Та	-40		+85	°C	

Note: 1. V_{IL} min: -2.0 V for pulse half-width \leq 10 ns.

DC Characteristics

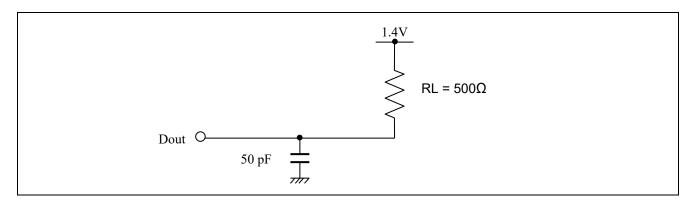
Parameter	Symbol	Min	Тур	Max	Unit	Test conditions
Input leakage current	_	_		1	μA	Vin = V _{SS} to V _{CC}
Output leakage current	ILO	—		1	μA	$CS1\# = V_{IH} \text{ or } CS2 = V_{IL} \text{ or}$ $OE\# = V_{IH} \text{ or } WE\# = V_{IL} \text{ or}$ $LB\# = UB\# = V_{IH}, V_{I/O} = V_{SS} \text{ to } V_{CC}$
Operating current	Icc			20	mA	$\label{eq:cs1} \begin{array}{l} CS1\#=V_{IL},\ CS2=V_{IH},\\ Others=V_{IH}/\ V_{IL},\ I_{I/O}=0\ mA \end{array}$
Average operating current	I _{CC1} (READ)		22* ¹	35	mA	
	I _{CC1}	_	30* ¹	50	mA	Min. cycle, duty = 100%, I _{I/O} = 0 mA, CS1# = V _{IL} , CS2 = V _{IH} , Others = V _{IH} /V _{IL}
	I _{CC2} (READ)		3*1	8	mA	Cycle time = 70 ns, duty = 100%, $I_{I/O} = 0$ mA, CS1# = V _{IL} , CS2 = V _{IH} , WE# = V _{IH} , Others = V _{IH} /V _{IL} Address increment scan or decrement scan
	I _{CC2}	_	20*1	30	mA	$ Cycle time = 70 ns, duty = 100\%, \\ I_{I/O} = 0 mA, CS1\# = V_{IL}, CS2 = V_{IH}, \\ Others = V_{IH}/V_{IL} \\ Address increment scan or decrement scan $
	Іссз		3*1	8	mA	$\begin{array}{l} Cycle \ time = 1 \ \mu s, \ duty = 100\%, \\ I_{I/O} = 0 \ mA, \ CS1\# \leq 0.2 \ V, \\ CS2 \geq V_{CC} - 0.2 \ V \\ V_{IH} \geq V_{CC} - 0.2 \ V, \ V_{IL} \leq 0.2 \ V \end{array}$
Standby current	Isb		0.1* ¹	0.5	mA	CS2 = V _{IL}
	ISB1	_	0.5*1	8	μA	$\begin{array}{l} 0 \ V \leq Vin \\ (1) \ 0 \ V \leq CS2 \leq 0.2 \ V \ or \\ (2) \ CS1\# \geq V_{CC} - 0.2 \ V, \\ CS2 \geq V_{CC} - 0.2 \ V \ or \\ (3) \ LB\# = UB\# \geq V_{CC} - 0.2 \ V, \\ CS2 \geq V_{CC} - 0.2 \ V, \\ CS1\# \leq 0.2 \ V \\ Average \ value \end{array}$
Output high voltage	Vон	2.4			V	I _{OH} = -1 mA
	Vон	Vcc – 0.2			V	I _{OH} = -100 μA
Output low voltage	V _{OL}	—		0.4	V	I _{OL} = 2 mA
	Vol			0.2	V	I _{OL} = 100 μA

Notes: 1. Typical values are at $V_{CC} = 3.0 \text{ V}$, Ta = +25°C and not guaranteed.

Capacitance

$(Ta = +25^{\circ}C, f = 1.0 \text{ MHz})$

Parameter	Symbol	Min	Тур	Max	Unit	Test conditions	Note
Input capacitance	Cin	_	_	8	pF	Vin = 0 V	1
Input/output capacitance	Ci/O	_	_	10	pF	V _{I/O} = 0 V	1


Note: 1. This parameter is sampled and not 100% tested.

AC Characteristics

(Ta = -40 to $+85^{\circ}$ C, V_{CC} = 2.7 V to 3.6 V)

Test Conditions

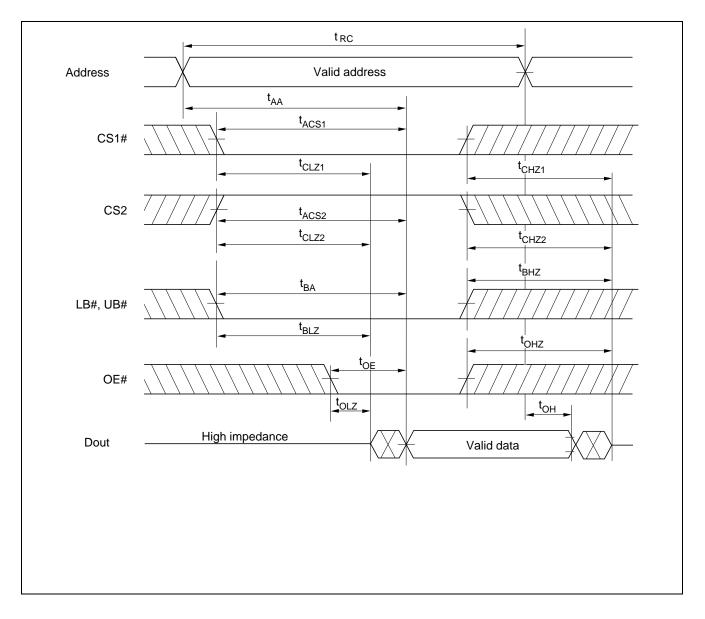
- Input pulse levels: $V_{IL} = 0.4 \text{ V}, V_{IH} = 2.4 \text{ V}$
- Input rise and fall time: 5 ns
- Input and output timing reference levels: 1.4 V
- Output load: See figures (Including scope and jig)

R1LV1616HBG-I Series

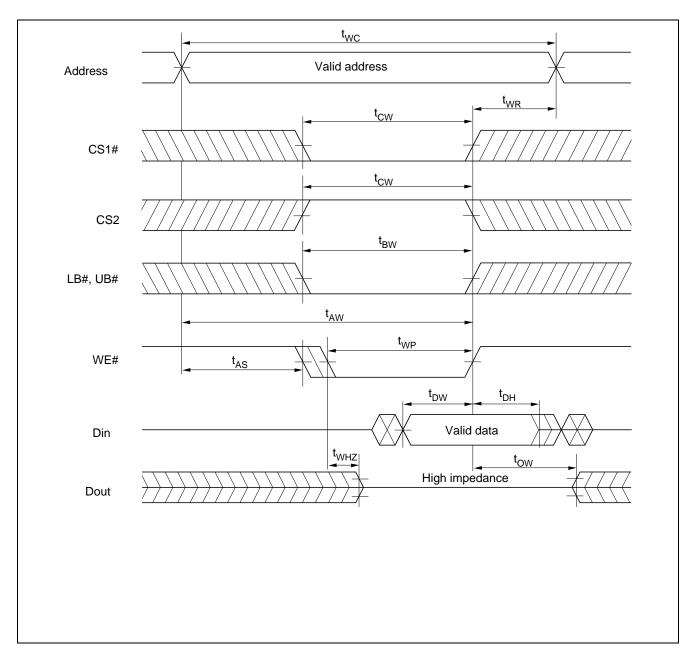
Read Cycle

			R1LV16	16HBG-I			
		-4SI		-5	SI		
Parameter	Symbol	Min	Max	Min	Max	Unit	Notes
Read cycle time	t _{RC}	45		55		ns	
Address access time	t _{AA}		45		55	ns	
Chip select access time	t _{ACS1}		45		55	ns	
	t _{ACS2}		45		55	ns	
Output enable to output valid	toe	_	30		35	ns	
Output hold from address change	t _{он}	10		10		ns	
LB#, UB# access time	t _{BA}	_	45		55	ns	
Chip select to output in low-Z	t _{CLZ1}	10		10		ns	2, 3
	t _{CLZ2}	10		10		ns	2, 3
LB#, UB# enable to low-Z	t _{BLZ}	5		5		ns	2, 3
Output enable to output in low-Z	toLz	5		5		ns	2, 3
Chip deselect to output in high-Z	t _{CHZ1}	0	20	0	20	ns	1, 2, 3
	t _{CHZ2}	0	20	0	20	ns	1, 2, 3
LB#, UB# disable to high-Z	tвнz	0	15	0	20	ns	1, 2, 3
Output disable to output in high-Z	tонz	0	15	0	20	ns	1, 2, 3

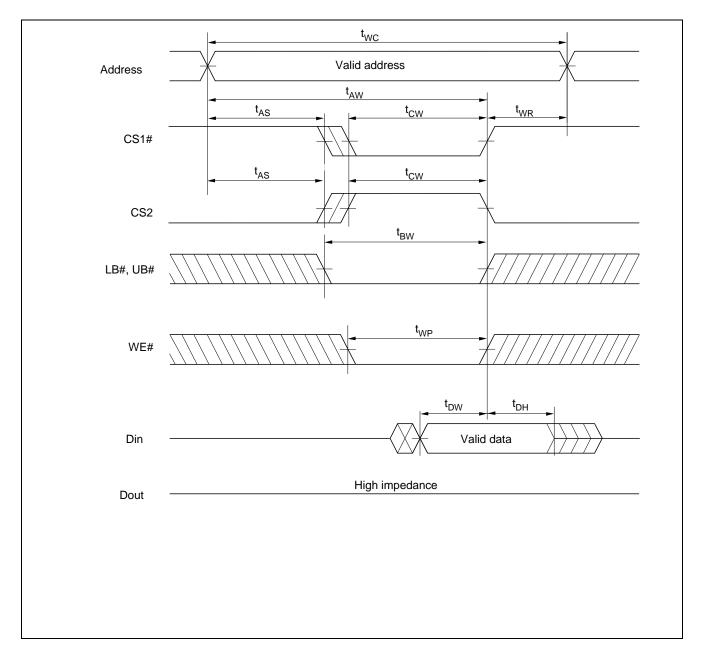
Write Cycle


		R1LV16 ²		16HBG-I			
		-4	SI	-5SI			
Parameter	Symbol	Min	Max	Min	Max	Unit	Notes
Write cycle time	t _{wc}	45		55	_	ns	
Address valid to end of write	t _{AW}	45		50	_	ns	
Chip selection to end of write	t _{cw}	45		50	_	ns	5
Write pulse width	t _{WP}	35		40	_	ns	4
LB#, UB# valid to end of write	t _{BW}	45		50		ns	
Address setup time	t _{AS}	0		0	_	ns	6
Write recovery time	t _{WR}	0		0		ns	7
Data to write time overlap	t _{DW}	25		25		ns	
Data hold from write time	t _{DH}	0		0		ns	
Output active from end of write	tow	5		5		ns	2
Output disable to output in high-Z	tонz	0	15	0	20	ns	1, 2
Write to output in high-Z	twнz	0	15	0	20	ns	1, 2

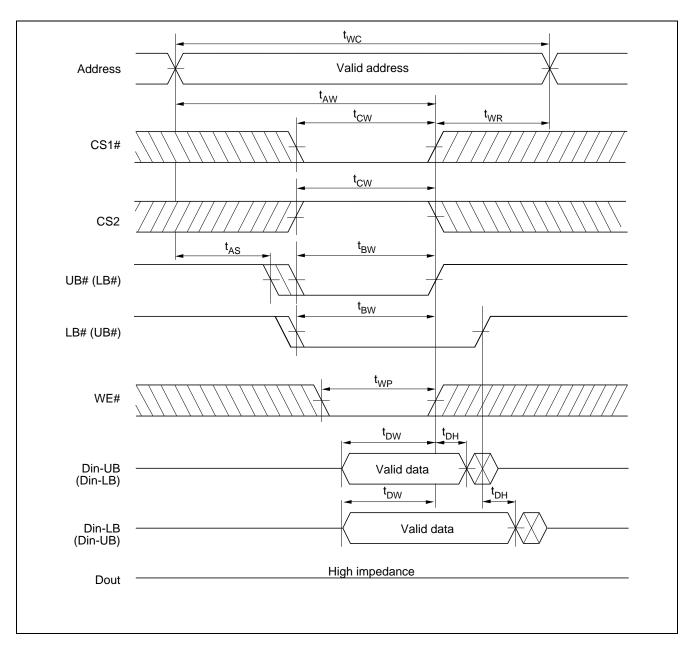
- Notes: 1. t_{CHZ}, t_{OHZ}, t_{WHZ} and t_{BHZ} are defined as the time at which the outputs achieve the open circuit conditions and are not referred to output voltage levels.
 - 2. This parameter is sampled and not 100% tested.
 - 3. At any given temperature and voltage condition, t_{HZ} max is less than t_{LZ} min both for a given device and from device to device.
 - 4. A write occurs during the overlap of a low CS1#, a high CS2, a low WE# and a low LB# or a low UB#. A write begins at the latest transition among CS1# going low, CS2 going high, WE# going low and LB# going low or UB# going low. A write ends at the earliest transition among CS1# going high, CS2 going low, WE# going high and LB# going high or UB# going high. twp is measured from the beginning of write to the end of write.
 - 5. t_{CW} is measured from the later of CS1# going low or CS2 going high to the end of write.
 - 6. t_{AS} is measured from the address valid to the beginning of write.
 - 7. t_{WR} is measured from the earliest of CS1# or WE# going high or CS2 going low to the end of write cycle.


Timing Waveform

Read Cycle



Write Cycle (1) (WE# Clock)

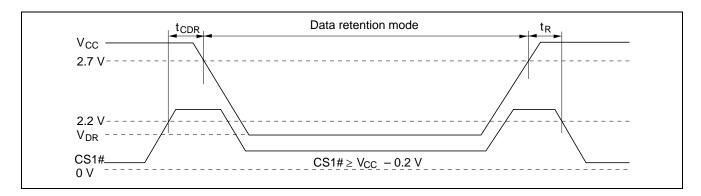


Write Cycle (2) (CS1#, CS2 Clock, $OE\# = V_{IH}$)

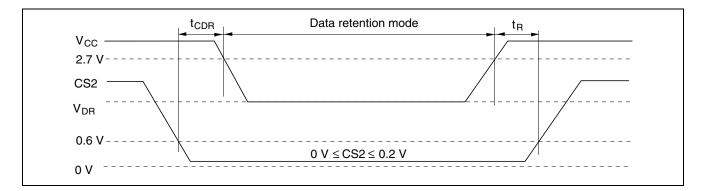
Write Cycle (3) (LB#, UB# Clock, OE# = V_{IH})

Low V_{CC} Data Retention Characteristics

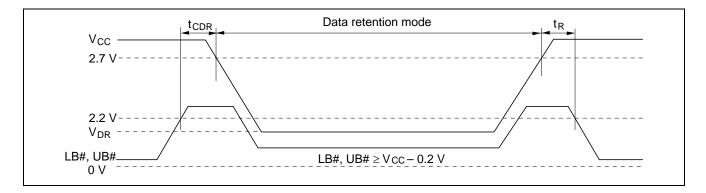
 $(Ta = -40 \text{ to } +85^{\circ}\text{C})$


Parameter	Symbol	Min	Тур	Max	Unit	Test conditions*2
V_{CC} for data retention	V _{DR}	1.5		3.6	V	$ \begin{array}{l} \mbox{Vin} \geq 0 \ \mbox{V} \\ (1) \ 0 \ \mbox{V} \leq CS2 \leq 0.2 \ \mbox{V or} \\ (2) \ CS2 \geq V_{CC} - 0.2 \ \mbox{V}, \\ \ CS1\# \geq V_{CC} - 0.2 \ \mbox{V or} \\ (3) \ \mbox{LB} \mbox{\tt = UB} \mbox{\tt \#} \geq V_{CC} - 0.2 \ \mbox{V}, \\ \ \ CS2 \geq V_{CC} - 0.2 \ \mbox{V}, \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
Data retention current	ICCDR	_	0.5*1	8	μΑ	$ \begin{array}{l} {\sf V}_{\rm CC} = 3.0 \; {\sf V}, \; {\sf Vin} \ge 0 \; {\sf V} \\ (1) \; 0 \; {\sf V} \le {\sf CS2} \le 0.2 \; {\sf V} \; {\sf or} \\ (2) \; {\sf CS2} \ge {\sf V}_{\rm CC} - 0.2 \; {\sf V}, \\ {\sf CS1} \# \ge {\sf V}_{\rm CC} - 0.2 \; {\sf V} \; {\sf or} \\ (3) \; {\sf LB} \# = {\sf UB} \# \ge {\sf V}_{\rm CC} - 0.2 \; {\sf V}, \\ {\sf CS2} \ge {\sf V}_{\rm CC} - 0.2 \; {\sf V}, \\ {\sf CS1} \# \le 0.2 \; {\sf V} \\ {\sf Average value} \end{array} $
Chip deselect to data retention time	tcdr	0			ns	See retention waveforms
Operation recovery time	t _R	5			ms]

Notes: 1. Typical values are at V_{CC} = 3.0 V, Ta = +25°C and not guaranteed.


CS2 controls address buffer, WE# buffer, CS1# buffer, OE# buffer, LB#, UB# buffer and Din buffer. If CS2 controls data retention mode, Vin levels (address, WE#, OE#, CS1#, LB#, UB#, I/O) can be in the high impedance state. If CS1# controls data retention mode, CS2 must be CS2 ≥ V_{CC} - 0.2 V or 0 V ≤ CS2 ≤ 0.2 V. The other input levels (address, WE#, OE#, LB#, UB#, I/O) can be in the high impedance state.

R1LV1616HBG-I Series



Low V_{CC} Data Retention Timing Waveform (2) (CS2 Controlled)

Low V_{CC} Data Retention Timing Waveform (3) (LB#, UB# Controlled)

Revision History

R1LV1616HBG-I Series Data Sheet

Rev.	Date	Contents of Modification					
		Page	Description				
0.01	Apr.29.2005	—	Initial issue				
1.00	Sep.21.2005	—	Deletion of Preliminary				
1.01	Feb.23.2017	p.1,p.3	Disclosed embedded ECC features				

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information 2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other disputes involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawing, chart, program, algorithm, application xamples 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others. 4. You shall not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics products. 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below "Standard" Computers: office equipment: communications equipment: test and measurement equipment: audio and visual equipment: home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc. "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (space and undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics. 6. When using the Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat radiation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions or failure or accident arising out of the use of Renesas Electronics products beyond such specified ranges. 7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please ensure to implement safety measures to guard them against the possibility of bodily injury, injury or damage caused by fire, and social damage in the event of failure or malfunction of Renesas Electronics products, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures by your own responsibility as warranty for your products/system. Because the evaluation of microcomputer software alone is very difficult and not practical, please evaluate the safety of the final products or systems manufactured by you. 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please investigate applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive carefully and sufficiently and use Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations 9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall not use Renesas Electronics products or technologies for (1) any purpose relating to the development, design, manufacture, use, stockpiling, etc., of weapons of mass destruction, such as nuclear weapons, chemical weapons, or biological weapons, or missiles (including unmanned aerial vehicles (UAVs)) for delivering such weapons, (2) any purpose relating to the development, design, manufacture, or use of conventional weapons, or (3) any other purpose of disturbing international peace and security, and you shall not sell, export, lease, transfer, or release Renesas Electronics products or technologies to any third party whether directly or indirectly with knowledge or reason to know that the third party or any other party will engage in the activities described above. When exporting, selling, transferring, etc., Renesas Electronics products or technologies, you shall comply with any applicable export control laws and regulations promulgated and administered by the governments of the countries asserting jurisdiction over the parties or transactions 10. Please acknowledge and agree that you shall bear all the losses and damages which are incurred from the misuse or violation of the terms and conditions described in this document, including this notice, and hold Renesas Electronics harmless, if such misuse or violation results from your resale or making Renesas Electronics products available any third party. 11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products. (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics. (Rev.3.0-1 November 2016) RENESAS **Renesas Electronics Corporation** SALES OFFICES http://www.renesas.com Refer to "http://www.renesas.com/" for the latest and detailed information Renesas Electronics America Inc. 2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A. Tel: +1-408-588-6000, Fax: +1-408-588-6130 Renesas Electronics Canada Limited 9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3 Tel: +1-905-237-2004

Notice

Renesas Electronics Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1628-585-100, Fax: +44-1628-585-900

Renesas Electronics Europe GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-6503-0, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd. Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd. Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333 Tel: +86-21-2226-0888, Fax: +86-21-2226-0999 Renesas Electronics Hong Kong Limited Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +852-2265-6688, Fax: +852 2886-9022 Renesas Electronics Taiwan Co., Ltd. 13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd. 80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949 Tei: +65-6213-0200, Fax: +65-6213-0300 Renesas Electronics Malaysia Sdn.Bhd. Unit 1207, Block B, Menara Amcorp, Amcorp Tel: +60-3-7955-9390, Fax: +60-3-7955-9510 p Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Renesas Electronics India Pvt. Ltd. No.777C, 100 Feet Road, HAL II Stage, Indiranagar, Bangalore, India Tel: +91-80-67208700, Fax: +91-80-67208777 Renesas Electronics Korea Co., Ltd. 12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea Tel: +82-2-558-3737, Fax: +82-2-558-5141