TS72250K - 10W CW GaN Broadband RF Switch SPDT

1.0 Features

- Low insertion loss: 0.35dB @ 800MHz
- High isolation: 45dB @ 800MHz
- High peak power handling capability
- No external DC blocking capacitors on RF lines
- 40dBm CW hot switching capability
- All RF ports OFF state
- Versatile 2.6-5.5V power supply
- Operating frequency: 10MHz to 6GHz

Figure 1 Device Image (16 Pin 3×3×0.8mm QFN Package)

2.0 Applications

- Private mobile radio handsets
- Public safety handsets
- Cellular infrastructure
- Small cells
- LTE relays and microcells
- Satellite terminals

3.0 Description

The TS72250K is a symmetrical reflective Single Pole Dual Throw (SPDT) switch designed for broadband, high peak power switching applications. Its broadband behavior from 10MHz to 6GHz frequencies makes the TS72250K an excellent switch for all applications requiring low insertion loss, high isolation and high linearity within a small package size. This part has the internal charge pump disabled to eliminate the charge pump spurs. A -17V supply is needed on the VCP pin.

The TS72250K is packaged into a compact Quad Flat No lead (QFN) 3x3mm 16 leads plastic package.

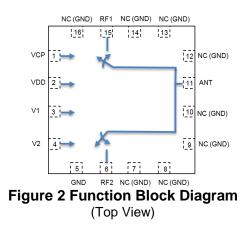

4.0 Ordering Information

Table 1 Ordering Information

Base Part Number	Package Type	Form	Qty	Reel Diameter	Reel Width	Orderable Part Number
TS72250K	TS72250K 16 Pin 3×3×0.8mm QFN		3000	13" (330mm)	18mm	TS72250KMTRPBF
	TS72250K-EVB					

RoHS/REACH/Halogen Free Compliance

5.0 Pin Description

Table 2 Pin Definition

Pin Number	Pin Name	Description	
1	VCP	Negative Voltage supply, -17V	
2	VDD	DC power supply	
3	V1	Switch control input 1	
4	V2	Switch control input 2	
6	RF2	RF port 2	
5,7,8,9,10,12,13,14,16	NC	No internal connection, Can be grounded	
11	ANT	Antenna port	
15	RF1	RF port 1	

Note: The backside ground (thermal) pad of the package must be grounded directly to the ground plane of PCB with multiple vias to ensure proper operation and thermal management.

6.0 Absolute Maximum Ratings

Table 3 Absolute Maximum Ratings @T_A=+25°C Unless Otherwise Specified

Parameter	Symbol	Value	Unit				
Electrical Ratings							
Power Supply Voltage	VDD	2.6 to 5.5	V				
Charge Pump Voltage	VCP	-15 to -18	V				
Storage Temperature Range	T _{st}	-55 to +125	°C				
Operating Temperature Range	T _{op}	-40 to +85	°C				
Maximum Junction Temperature	TJ	+140	°C				
RF Input Power CW, 800MHz	RFx	42	dBm				
Thermal Rati	ngs						
Thermal Resistance (junction-to-case) – Bottom side	Thermal Resistance (junction-to-case) – Bottom side Rejc 25 °C/W						
Thermal Resistance (junction-to-top)	R _{θJT}	≤ 39	°C/W				
Soldering Temperature	TSOLD	260	°C				
ESD Ratings							
Human Body Model (HBM)	Level 1B	500 to <1000	V				
Charged Device Model (CDM)	Level C3	≥1000	V				
Moisture Rating							
Moisture Sensitivity Level	MSL	1	-				

Attention:

Maximum ratings are absolute ratings. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Exceeding one or a combination of the absolute maximum ratings may cause permanent and irreversible damage to the device and/or to surrounding circuit.

7.0 Electrical Specifications

Table 4 Electrical Specifications @T_A=+25°C Unless Otherwise Specified; VDD=+2.7V, VCP= -17V; 50Ω Source/Load.

Parameter	Condition	Minimum	Typical	Maximum	Unit
Operating Frequency		10		6000	MHz
Insertion Loss, RFx	400MHz		0.30		dB
	800MHz		0.35	0.45	
	1.95GHz		0.40	0.60	
	2.6GHz		0.45	0.70	
	6.0GHz		0.90		
Isolation ANT-RFx	400MHz		50		dB
	800MHz	40	45		
	1.95GHz	34	35		
	2.6GHz	27	32		
	6.0GHz		17		
Return Loss ANT-	400MHz		25		dB
RFx	800MHz		25		
	1.95GHz		25		
	2.6GHz		25		
	6.0GHz		13		
H2	800MHz, Pin=35dBm		-46		dBm
H3	800MHz, Pin=35dBm		-46		dBm
IIP3	800MHz		73		dBm
Peak Power Handling ^[1]	800MHz, Pulsed power		45		dBm
P0.1dB ^[2]	0.1dB compression point, 800MHz	40	42		dBm
Switching Time 50% ctrl to 10/90% of the RF value is settled. C1=1nF (refer to Figure 3)			0.7		μS
Control Voltage	Power supply VDD	2.6	3.3	5.5	V
_	Charge Pump Supply Voltage	-18	-17	-15	V
	All control pins high, V _{ih}	1.0	3.3	5.25	V
	All control pins low, V _{il}	-0.3		0.5	V
Control Current	All control pins low, li		0		μA
F	All control pins high, Iih			7.5	μA
Current Consumption, IDD	Active mode		160	200	μA

Note:

[1] 1% duty cycle and 10µs frame width. Peak P0.1dB.

[2] P0.1dB is a figure of merit.

[3] No external DC blocking capacitors required on RF pins unless DC voltage is applied on a RF pin.

8.0 Switch Truth Table

Table 5 Switch Truth Table

V1	V2	Active RF Path	
0	1	All OFF	
0	0	ANT-RF1	
1	0	ANT-RF2	

Bias Sequence:

[1] VDD should be applied first before VCP. Minimum time between VDD and VCP should be 50usec.
[2] Vc can be toggled/switched after VCP has settled.

9.0 Evaluation Board

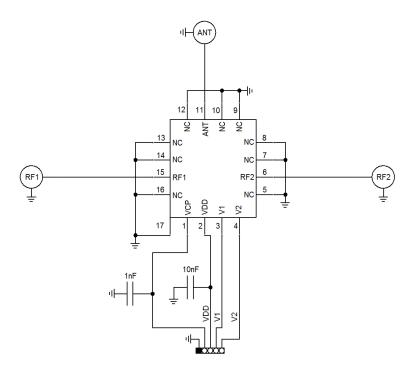


Figure 3 Evaluation Board Schematic

Attention:

- [1] 17 refers to the center pad of the device.
- [2] -17V needed on VCP pin.

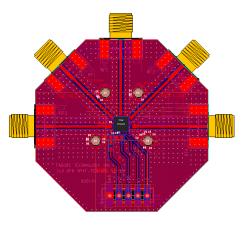
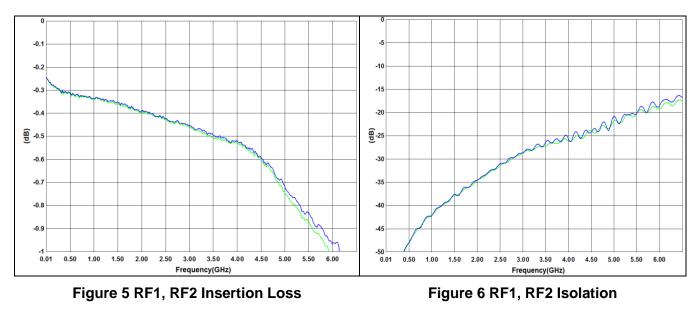



Figure 4 Evaluation Board Image

10.0 Typical Characteristics

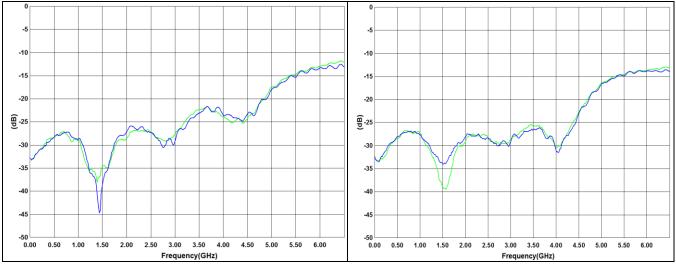
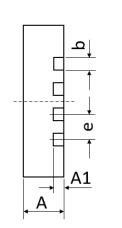



Figure 7 RF1, RF2 Return Loss

Figure 8 ANT Return Loss

11.0 Device Package Information

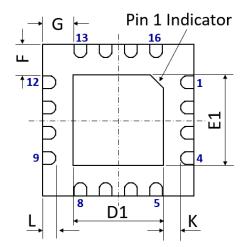


Figure 9 Device Package Drawing

(All dimensions are in mm)

Table 6 Device Package Dimensions

Dimension (mm) Value (mm)		Tolerance (mm)	Dimension (mm)	Value (mm)	Tolerance (mm)
А	0.80	±0.05	E	3.00 BSC	±0.05
A1	0.203	±0.02	E1	1.70	±0.05
b	0.25	+0.05/-0.07	F	0.625	±0.05
D	3.00 BSC	±0.05	G	0.625	±0.05
D1	1.70	±0.05	L	0.25	±0.05
е	0.50 BSC	±0.05	K	0.40	±0.05

Note: Lead finish: Pure Sn without underlayer; Thickness: 7.5µm ~ 20µm (Typical 10µm ~ 12µm)

Attention:

Please refer to application notes *TN-001* and *TN-002* at http://www.tagoretech.com for PCB and soldering related guidelines.

12.0 PCB Land Design

Guidelines:

[1] 4 layer PCB is recommended.

- [2] Via diameter is recommended to be 0.2mm to prevent solder wicking inside the vias.
- [3] Thermal vias shall only be placed on the center pad.
- [4] The maximum via number for the center pad is $3(X)\times 3(Y)=9$.

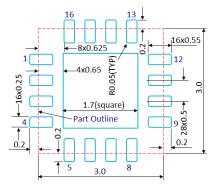
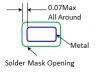
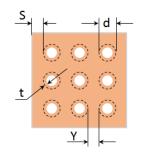



Figure 10 PCB Land Pattern

(Dimensions are in mm)



Non-Solder Mask Defined (Preferred) Solder Mask Defined

Preterrea)

Figure 11 Solder Mask Pattern

(Dimensions are in mm)

Figure 12 Thermal Via Pattern

(Recommended Values: S≥0.15mm; Y≥0.20mm; d=0.2mm; Plating Thickness t=25µm or 50µm)

13.0 PCB Stencil Design

Guidelines:

- [1] Laser-cut, stainless steel stencil is recommended with electro-polished trapezoidal walls to improve the paste release.
- [2] Stencil thickness is recommended to be 125µm.

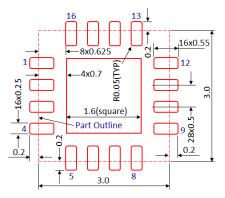


Figure 13 Stencil Openings (Dimensions are in mm)

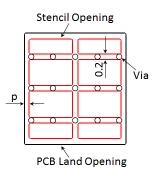
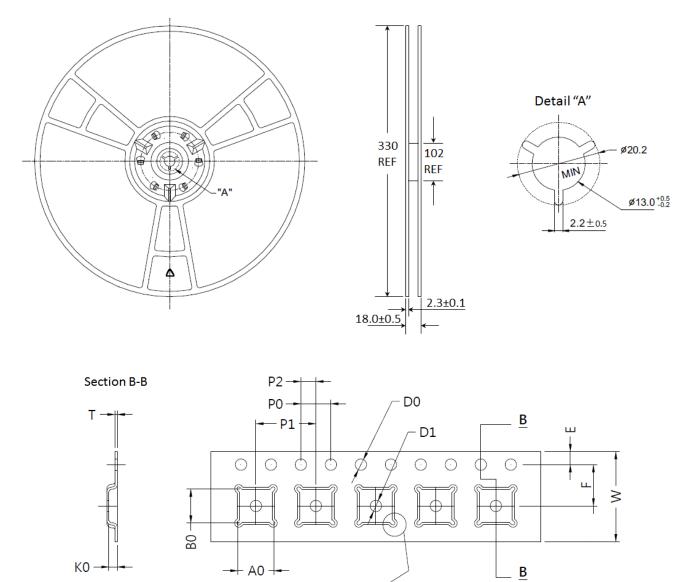



Figure 14 Stencil Openings Shall not Cover Via Areas If Possible (Dimensions are in mm)

14.0 Tape and Reel Information

R0.25	
 E Tone and Beel Drowing	

Figure 15 Tape and Reel Drawing

Table 7 Tape and Reel Dimensions								
Dimension (mm)	Dimension (mm) Value (mm)		Dimension (mm)	Value (mm)	Tolerance (mm)			
A0	3.35	±0.10	K0	1.10	±0.10			
B0	3.35	±0.10	P0	4.00	±0.10			
D0	1.50	+0.10/-0.00	P1	8.00	±0.10			
D1	1.50	+0.10/-0.00	P2	2.00	±0.05			
E	1.75	±0.10	Т	0.30	±0.05			
F	5.50	±0.05	W	12.00	±0.30			

Edition Revision 1.5 - 2023-01-03

Published by

Tagore Technology Inc. 601 Campus Drive, Suite C1 Arlington Heights, IL 60004, USA

©2018 All Rights Reserved

Legal Disclaimer

The information provided in this document shall in no event be regarded as a guarantee of conditions or characteristics. Tagore Technology assumes no responsibility for the consequences of the use of this information, nor for any infringement of patents or of other rights of third parties which may result from the use of this information. No license is granted by implication or otherwise under any patent or patent rights of Tagore Technology. The specifications mentioned in this document are subject to change without notice.

Information

For further information on technology, delivery terms and conditions and prices, please contact Tagore Technology: support@tagoretech.com.