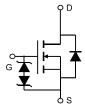


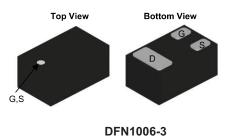
N-Channel Trench MOSFET

Description

The RMA7N20ED1 designed by the trench processing techniques to achieve extremely low on-resistance. And fast switching speed and improved transfer effective .



 $R_{DS(ON)} < 0.26\Omega @ V_{GS}=2.5V$


- $R_{DS(ON)} < 0.22\Omega @ V_{GS}=4.5V$
- Low On-Resistance
- High fast switching
- Halogen-free

Application

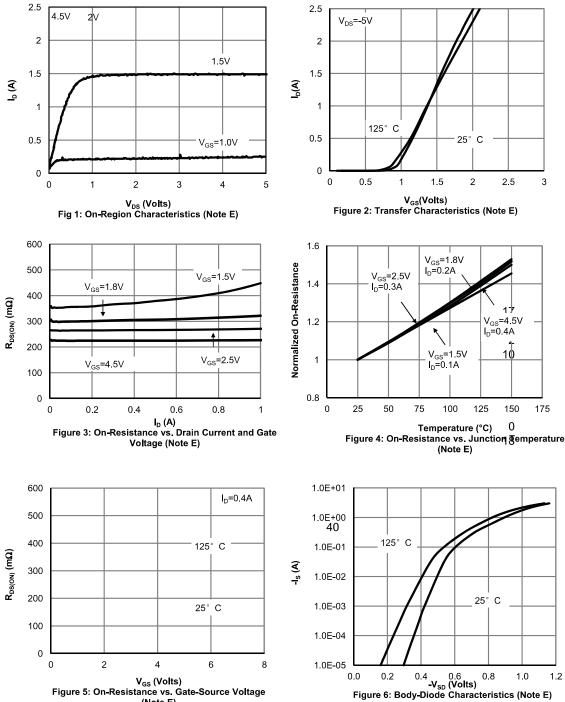
Load switch

Schematic diagram

Package Marking And Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity	
1606	RMA7N20ED1	DFN1006-3	Ø180mm	8 mm		

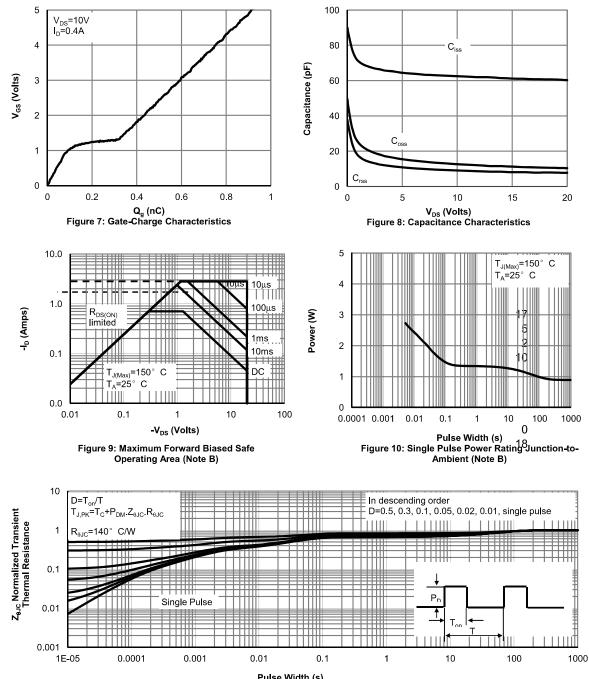
Absolute Maximum Ratings (T_A=25℃unless otherwise noted)


Parameter	Symbol	Limit	Unit		
Drain-Source Voltage	Vds	20	V		
Gate-Source Voltage	Vgs	±8	V		
Continuous Droin Current (T150°)	T _c =25℃		0.7	А	
Continuous Drain Current (TJ =150℃)	T _c =100℃		0.5		
Drain Current-Pulsed (Note 1)	I _{DM}	3	А		
Maximum Power Dissipation	PD	0.55	W		
Diode Continuous Forward Current	Is	0.7	А		
Operating Junction and Storage Temperature	TJ,TSTG	-50 To 150	°C		

Thermal Characteristic

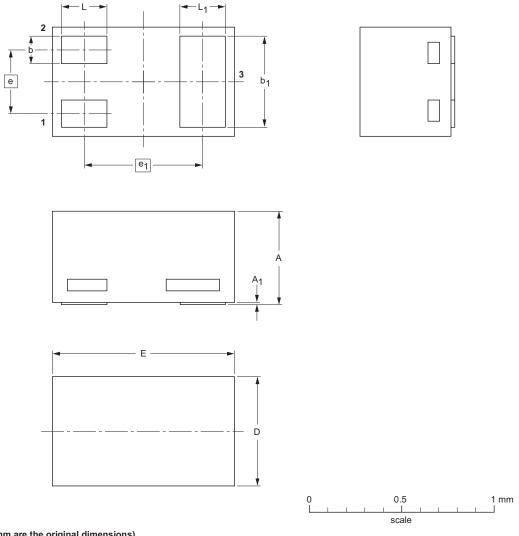
Thermal Resistance, Junction-to-Ambient (Note 2)	R _{0JA}	100	°C/W]
--	------------------	-----	------	---

Symbol	Parameter	Condition	Min	Тур	Max	Unit
Static Ele	ectrical Characteristics @ T」= 25°	C (unless otherwise s	tated)		-	
$V_{(BR)DSS}$	Drain-Source Breakdown Voltage	Vgs=0V Id=250µA	20			V
I _{DSS}	Zero Gate Voltage Drain Current (Tc=25℃)	VDS=20V,VGS=0V			1	μA
-DSS	Zero Gate Voltage Drain Current (Tc=125℃)	VDS=20V,VGS=0V			100	μA
GSS	Gate-Body Leakage Current	Vgs=±8 V,V ds=0V			±100	nA
$V_{\rm GS(TH)}$	Gate Threshold Voltage	Vos=Vgs,Io=250µA	0.4	0.8	1.2	V
$R_{DS(ON)}$	Drain-Source On-State Resistance	Vgs=2.5V,Id=0.3A		210	260	mΩ
$R_{DS(ON)}$	Drain-Source On-State Resistance	Vgs=4.5V, Id=0.5A		180	220	mΩ
Dynamic	Electrical Characteristics @ TJ = 2	25°C (unless otherwise	e stated)			
C _{iss}	Input Capacitance			40		pF
C _{oss}	Output Capacitance	VDS=10V,VGS=0V, f=1MHz		15		pF
C _{rss}	Reverse Transfer Capacitance			6.5		pF
Q _g	Total Gate Charge			1.1		nC
Q_{gs}	Gate-Source Charge	Vps=10V,lp=0.5A, Vgs=4.5V		0.3		nC
Q_{gd}	Gate-Drain Charge			0.2		nC
	g Characteristics	·				•
t _{d(on)}	Turn-on Delay Time	VDD=10V,		2.2		nS
t _r	Turn-on Rise Time	ID=0.3A,		4		nS
t _{d(off)}	Turn-Off Delay Time	Rg=6Ω, Vgs=4.5V,		18		nS
t _f	Turn-Off Fall Time	RL=5Ω,		9		nS
Source- [Drain Diode Characteristics					
I _{SD}	Source-drain current(Body Diode)				0.5	А
SDM	Pulsed Source-drain current (Body Diode)	T₀=25℃			3 ①	A
$V_{\rm SD}$	Forward on voltage	Tj=25℃,IsD=0.5A, Vgs=0V		0.75	1.2	V


CRECTRON

RATING AND CHARACTERISTICS CURVES (RMA7N20ED1)

V_{GS} (Volts) Figure 5: On-Resistance vs. Gate-Source Voltage (Note E)



RATING AND CHARACTERISTICS CURVES (RMA7N20ED1)

Pulse Width (s) Figure 11: Normalized Maximum Transient Thermal Impedance (Note B)

DFN1006-3 Package Information

DIMENSIONS (mm are	the original dimensions)
--------------------	--------------------------

UNIT	A ⁽¹⁾	A ₁ max.	b	b ₁	D	Е	е	e ₁	L	L ₁
mm	0.50 0.46	0.03	0.20 0.12	0.55 0.47	0.62 0.55	1.02 0.95	0.35	0.65	0.30 0.22	0.30 0.22

CRECTRON

DISCLAIMER NOTICE

Rectron Inc reserves the right to make changes without notice to any product specification herein, to make corrections, modifications, enhancements or other changes. Rectron Inc or anyone on its behalf assumes no responsibility or liability for any errors or inaccuracies. Data sheet specifications and its information contained are intended to provide a product description only. "Typical" parameters which may be included on RECTRON data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. Rectron Inc does not assume any liability arising out of the application or use of any product or circuit.

Rectron products are not designed, intended or authorized for use in medical, life-saving implant or other applications intended for life-sustaining or other related applications where a failure or malfunction of component or circuitry may directly or indirectly cause injury or threaten a life without expressed written approval of Rectron Inc. Customers using or selling Rectron components for use in such applications do so at their own risk and shall agree to fully indemnify Rectron Inc and its subsidiaries harmless against all claims, damages and expenditures.

