

Precision Shunt, Rated Current 300A, Standard Tolerance 0.1% Low Thermal EMF, TCR 20ppm/°C, Bakelite Based

Shunt works at very high current, so the temperature of surface rises sharply which will cause the change of resistance. For precision measurement, we must choose shunts which are with low TCR, low PCR and low Thermal EMF.

Resi launched the precision shunt series which can reach 0.1% tolerance from 10% to 100% of rated current. The maximum TCR is 20 ppm/°C in the range of -20°C to 120°C. Besides, the shunt has extremely stability with low PCR and low Thermal EMF

Dimensions (mm)

Performance		
Test	Test Method	Standard
Optimum Surface Temperature	Measured at the center of metal strip	+30°C~+90°C
Operating Temperature Range	Measured at the center of metal strip	- 40°C~+140°C
Maximum Surface Temperature	Measured at the center of metal strip	140°C
Thermal EMF	When reach heat balance, disconnect the circuit and test EMF	<0.05 µV/°C
TCR	Measured temperature range of -25°C to +120°C, 25°C ref.	≤±20ppm/°C
Current Coefficient	10%-100% Rated Current Test	≤±5ppm/A
Short Time Overload	2.25 rated voltage for 5 seconds	∆R≤±0.05%
Long Time Overload	1.2 rated voltage for 2 hours, 25°C	_R≤±0.1%
Thermal Equilibrium Time	Measured at the center of metal strip when resistance won t change	<5min

Part Number Information

*Better tolerance can be customized

Precision DC Ammeter Shunt

Custom Service for Your Application (CTS Service)

Each shunt requires precise trimming of value. The main challenge in the trimming process is to reach tight tolerance both at 10% of rated current and 100% rated current. It is known that the temperature curve of Manganin material is not linear, so to adjust the surface temperature of metal strip to the optimum surface temperature is the only way to achieve tight tolerance.

CTS is a free customized trimming service. It will estimate customer's working condition and the average surface temperature of the shunt, and then provides the best resistance for precision measurement. CTS can significantly improve thetolerance. Each CTS product will be assigned with a unique identification code.

We will provide test reports for every CTS product for free.

If you are interested in CTS service, please contact our sales engineers with below required information.

Minimum Operating Current	Minimum Ambient Temperature	
Maximum Operating Current	Maximum Ambient Temperature	
Working Current Curve	Ambient Temperature Curve	
Final Product	Installation Method	
Final Product Working Condition	Heat Dissipation Condition	
Design Lifetime	Installation Notes or Picture	
Note		

Reverse Installation Advice

In the case of limited heat dissipation, the heat dissipation can be improved by reverse mounting. First of all, connect the voltage terminal, then connect the current terminal, so that the shunt blade is far away from the base, and the contact area between the copper bar and the shunt copper head get bigger.

According to the IEEE standard, the operating current should not be higher than 2/3 of the rated current under the normal conditions.

Derating is required when the ambient temperature is higher than 40 °C to avoid damaging the shunt.

Air cooling, water cooling, increased physical size, and installation of heat sinks can be used to reduce operating temperature.