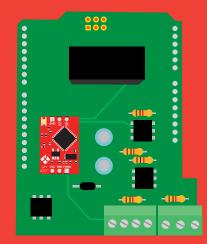
AtlasScientific Environmental Robotics

V 5.9 Revised 10/21

Embedded pH Circuit ISO 10523 Compliant

Reads	рН	
Range	.001 – 14.000	GND TX RX
Resolution	.001	
Accuracy	+/- 0.002	
Response time	1 reading per sec	
Supported probes	Any type & brand	
Calibration	1, 2, 3 point	
Temp compensation	Yes	
Data protocol	UART & I ² C	pH VCC PRB PGND
Default I ² C address	99 (0x63)	EZO [™]
Operating voltage	3.3V – 5V	RoHS
Data format	ASCII	PATENT PROTECTED
Written by Jordan Press		

Written by Jordan Press Designed by Noah Press


SOLDERING THIS DEVICE VOIDS YOUR WARRANTY.

This is sensitive electronic equipment. Get this device working in a solderless breadboard first. Once this device has been soldered it is no longer covered by our warranty.

This device has been designed to be soldered and can be soldered at any time. Once that decision has been made, Atlas Scientific no longer assumes responsibility for the device's continued operation. The embedded systems engineer is now the responsible party.

Get this device working in a solderless breadboard first!

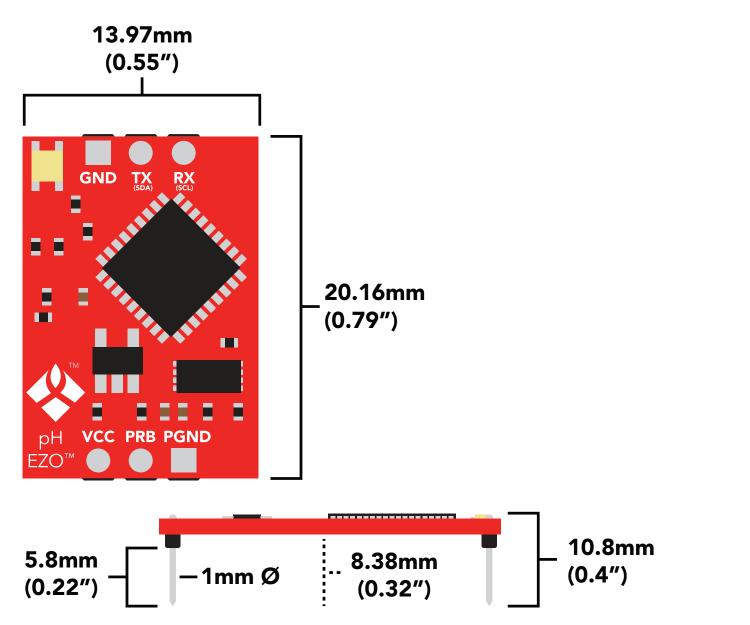
Do not embed this device without testing it in a solderless breadboard!

Table of contents

Circuit dimensions	4
Power consumption	4
Absolute max ratings	4
Operating principle	5

UART

UART mode	17
Receiving data from device	18
Sending commands to device	19
LED color definition	20
UART quick command page	21
LED control	22
Find	23
Continuous reading mode	24
Single reading mode	25
Calibration	26
Export calibration	27
Import calibration	28
Slope	29
Extended pH scale	30
Temperature compensation	31
Naming device	32
Device information	33
Response codes	34
Reading device status	35
Sleep mode/low power	36
Change baud rate	37
Protocol lock	38
Factory reset	39
Change to I ² C mode	40
Manual switching to I ² C	41


Power and data isolation	6
Correct wiring	8
Calibration theory	11
Default state	14
Available data protocols	15

²C

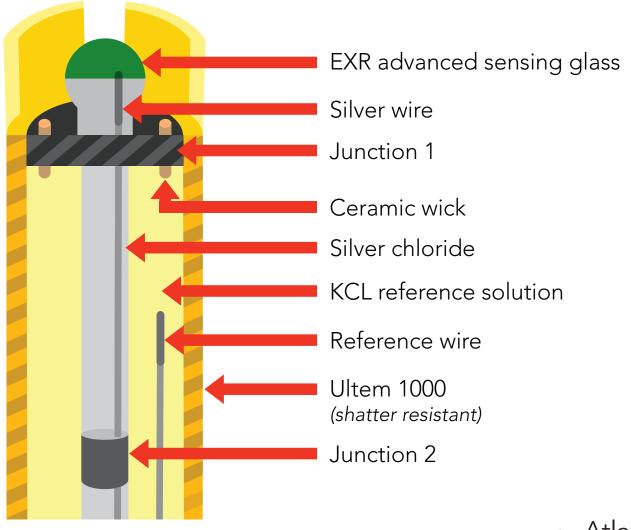
I ² C mode	43
Sending commands	44
Requesting data	45
Response codes	46
LED color definition	47
I ² C quick command page	48
LED control	49
Find	50
Taking reading	51
Calibration	52
Export calibration	53
•	
Import calibration	54
Slope	55
Extended pH scale	56
Temperature compensation	57
Naming device	58
Device information	59
Reading device status	60
Sleep mode/low power	61
Protocol lock	62
I ² C address change	63
Factory reset	64
Change to UART mode	65
Manual switching to UART	66

Circuit footprint	67
Datasheet change log	68
Warranty	71
م Atlas S	cientific
	Environmental Robotics

EZO[™] circuit dimensions

	LED	MAX	STANDBY	SLEEP
5V	ON	18.3 mA	16 mA	1.16 mA
	OFF	13.8 mA	13.8 mA	
3.3V	ON	14.5 mA	13.9 mA	0.995 mA
	OFF	13.3 mA	13.3 mA	

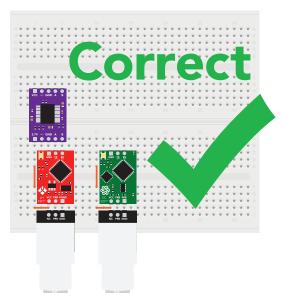

Power consumption Absolute max ratings

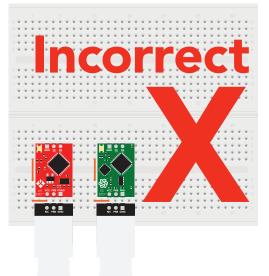

Parameter	MIN	ТҮР	MAX
Storage temperature (EZO™ pH)	-65 °C		125 °C
Operational temperature (EZO™ pH)	-40 °C	25 °C	85 °C
VCC	3.3V	5V	5.5V

Operating principle

A pH (**potential of Hydrogen**) probe measures the hydrogen ion activity in a liquid. At the tip of a pH probe is a glass membrane. This glass membrane permits hydrogen ions from the liquid being measured to defuse into the outer layer of the glass, while larger ions remain in the solution. The difference in the concentration of hydrogen ions (outside the probe vs. inside the probe) creates a VERY small current. This current is proportional to the concentration of hydrogen ions in the liquid being measured.

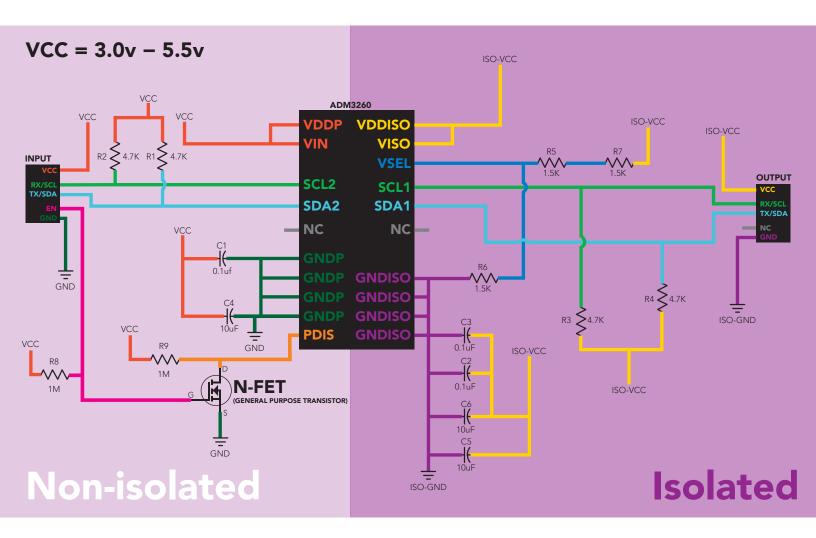
Power and data isolation


The Atlas Scientific EZO[™] pH circuit is a very sensitive device. This sensitivity is what gives the pH circuit its accuracy. This also means that the pH circuit is capable of reading micro-voltages that are bleeding into the water from unnatural sources such as pumps, solenoid valves or other probes/sensors.


When electrical noise is interfering with the pH readings it is common to see rapidly fluctuating readings or readings that are consistently off. To verify that electrical noise is causing inaccurate readings, place the pH probe in a cup of water by itself. The readings should stabilize quickly, confirming that electrical noise was the issue.

When reading pH and Conductivity or Dissolved Oxygen together, it is **strongly recommended** that the EZO[™] pH circuit is electrically isolated from the EZO[™] Conductivity or Dissolved Oxygen circuit.

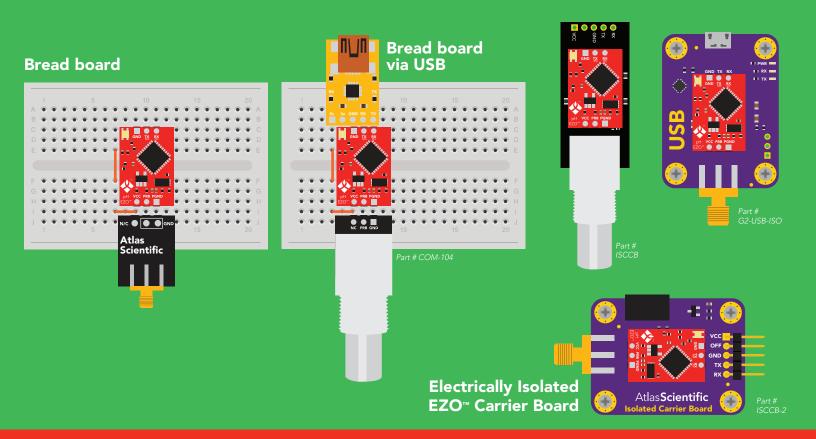
Basic EZO™ Inline Voltage Isolator

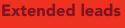


This schematic shows exactly how we isolate data and power using the and a few passive components. The ADM3260 can output isolated power up to 150 mW and incorporates two bidirectional data channels.

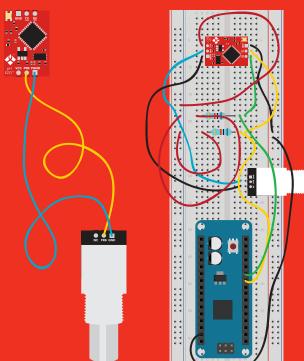
This technology works by using tiny transformers to induce the voltage across an air gap. PCB layout requires special attention for EMI/EMC and RF Control, having proper ground planes and keeping the capacitors as close to the chip as possible are crucial for proper performance. The two data channels have a $4.7k\Omega$ pull up resistor on both the isolated and non-isolated lines (R1, R2, R3, and R4) The output voltage is set using a voltage divider (R5, R6, and R7) this produces a voltage of 3.9V regardless of your input voltage.

Isolated ground is different from non-isolated ground, these two lines should not be connected together.



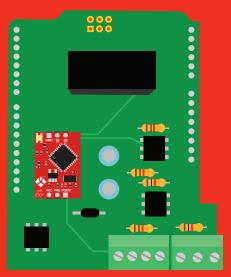

Correct wiring

Carrier board


USB carrier board

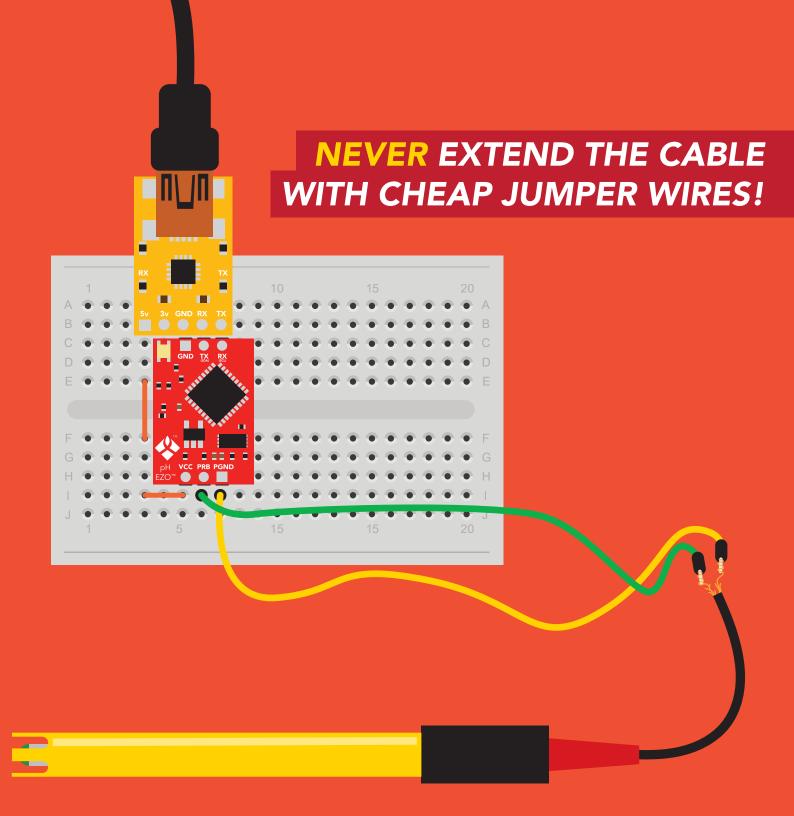
Incorrect wiring

Sloppy setup

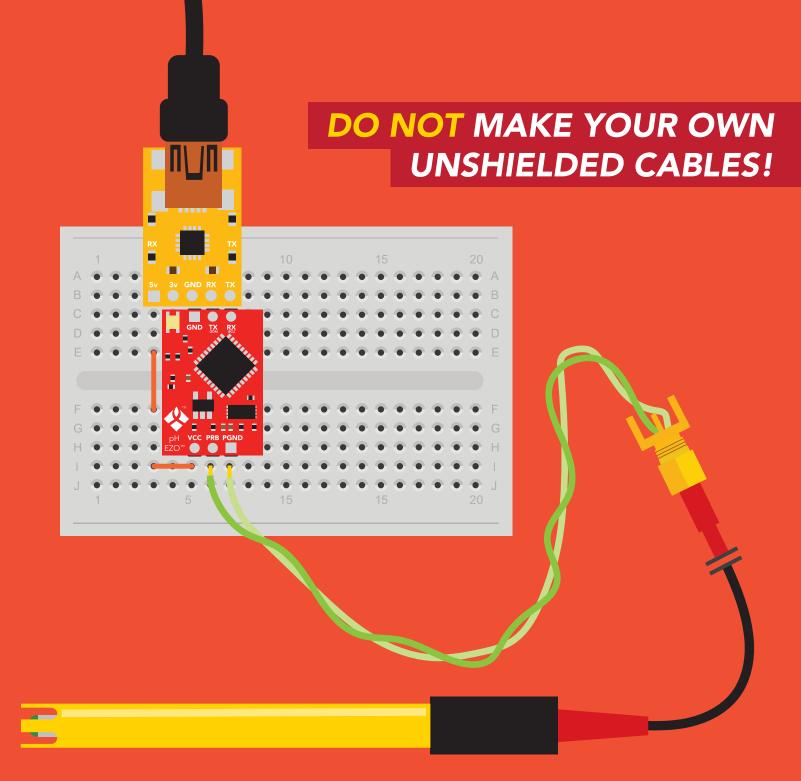

Perfboards or Protoboards

CONCUSSION CONCUS CONCUSSION CONC

NEVER use Perfboards or Protoboards


Flux residue and shorting wires make it very hard to get accurate readings.

*Embedded into your device


*Only after you are familar with EZO[™] circuits operation

DO NOT CUT THE PROBE CABLE WITHOUT REFERING TO THIS DOCUMENT!



ONLY USE SHIELDED CABLES.

Calibration theory

	- C	X
2.973		
3.141		
4.594	X Unstabilized	
5.362		
6.0 <u>80</u>		
6.190		
6.190		
6.190	- Stabilized	
6.190		
6.190		
6.1 <u>90</u>		
		Send

The most important part of calibration is watching the readings during the calibration process.

It's easiest to calibrate the device in its default state (UART mode, with continuous readings enabled).

Switching the device to I²C mode after calibration **will not** affect the stored calibration. If the device must be calibrated in I²C mode be sure to **continuously request readings** so you can see the output from the probe.

Calibration order

If this is your first time calibrating the $\mathsf{EZO}^{\scriptscriptstyle\mathsf{TM}}$ pH circuit, we recommend that you follow this calibration order.

Single, Two point, or Three point calibration

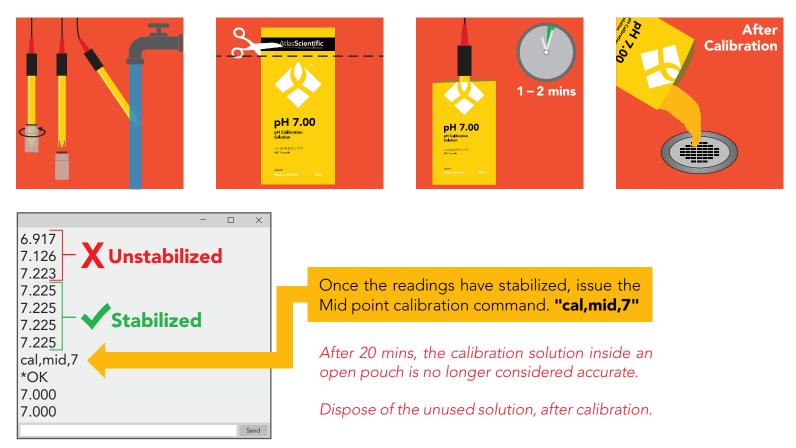
No calibration

Two point calibration

Two point calibration will provide high accuracy between 7.00 and the second point calibrated against, such as a **4.00**.

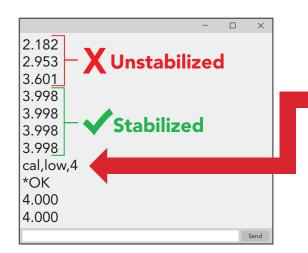
Single point calibration

Three point calibration



Three point calibration will provide high accuracy over the full pH range. Three point calibration at **4.00**, **7.00** and **10.00** should be considered the standard.

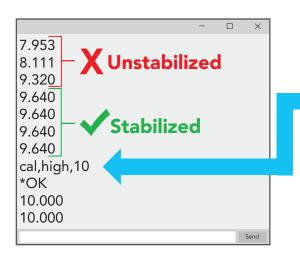
The first calibration point must be the Mid point (pH 7.00)


Mid point calibration

Remove the soaker bottle and rinse off the pH probe. Remove the top of the pH **7.00** calibration solution pouch. Place the pH probe inside the pouch and let the probe sit in the calibration solution until the readings stabilize (*small movement from one reading to the next is normal*).

Low point calibration

- Rinse off the probe before calibrating to the low point.
- Open the pouch of pH **4.00** calibration solution, and place probe inside the pouch.
- Wait for readings to stabilize (1 2 minutes).


Once the readings have stabilized, issue the Low point calibration command. "cal,low,4"

After 20 mins, the calibration solution inside an open pouch is no longer considered accurate.

Dispose of the unused solution, after calibration.

High point calibration

- Rinse off the probe before calibrating to the high point.
- Open the pouch of pH **10.00** calibration solution, and place probe inside the pouch.
- Wait for readings to stabilize (1 2 minutes).

Once the readings have stabilized, issue the High point calibration command. **"cal,high,10"**

After 20 mins, the calibration solution inside an open pouch is no longer considered accurate.

Dispose of the unused solution, after calibration.

Issuing the cal,mid command after the EZO[™] pH circuit has been calibrated, will clear the other calibration points. Full calibration will have to be redone.

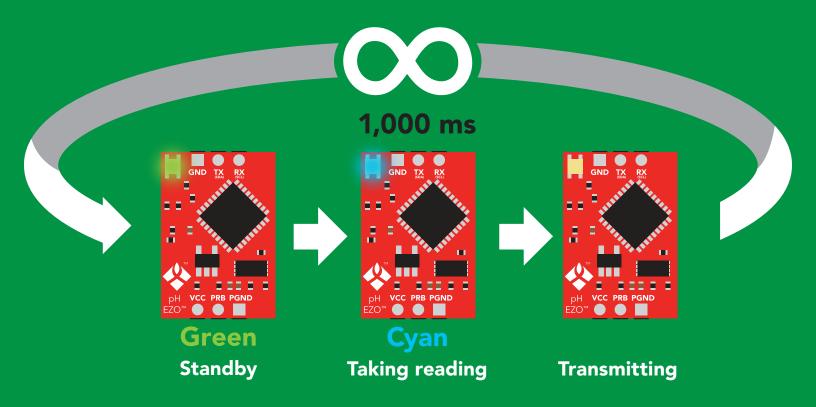
The EZOTM pH circuits default temperature compensation is set to 25° C. If the temperature of the calibration solution is +/- 2° C from 25° C, consider setting the temperature compensation first. **Temperature changes of < 2° C are insignificant.**

Default state UART mode

Baud

Readings

Speed


LED

9,600

continuous

1 reading per second

on

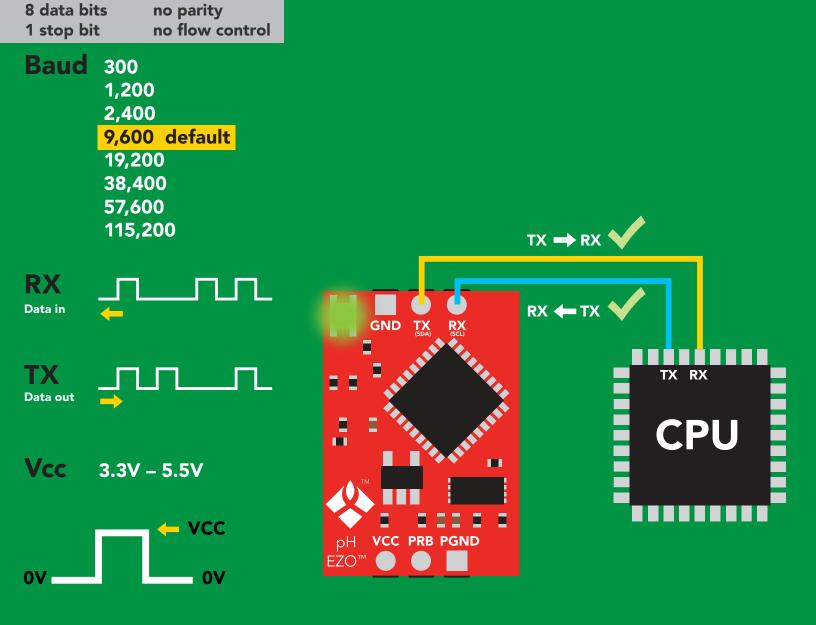
1²C

X Unavailable data protocols SPI Analog RS-485 Mod Bus 4–20mA

15 Copyright © Atlas Scientific LLC

UART mode

Settings that are retained if power is cut

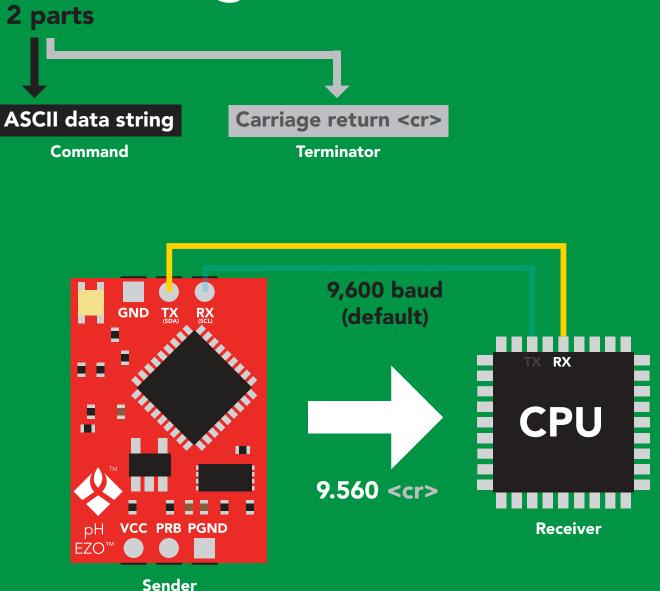

Baud rate Calibration Continuous mode Device name Enable/disable response codes Hardware switch to I²C mode LED control Protocol lock Software switch to I²C mode

Settings that are **NOT** retained if power is cut

Find Sleep mode Temperature compensation

UART mode

Data format


Reading	рН
Units	рН
Encoding	ASCII
Format	string
Terminator	carriage returr

Data type Decimal places Smallest string Largest string

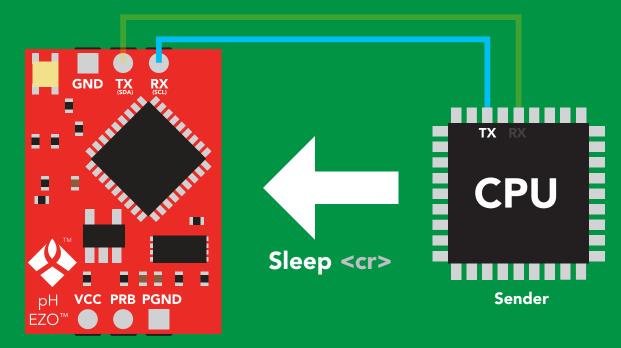
floating point 3 4 characters 40 characters

Receiving data from device

 Advanced

 ASCII:
 9
 .
 5
 6
 0
 <cr>
 Hex:
 39
 2E
 35
 36
 30
 0D

 Dec:
 57
 46
 53
 54
 48
 13

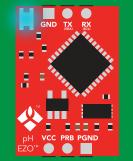

Sending commands to device ^{2 parts}

Command (not case sensitive)


Carriage return <cr>

ASCII data string

Terminator


Receiver

LED color definition

Green Cyan UART standby Taking reading


Purple Changing

baud rate

Red

Command not understood

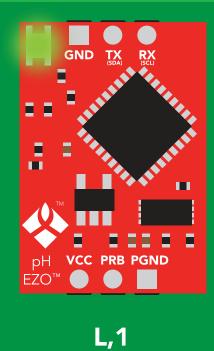
White Find

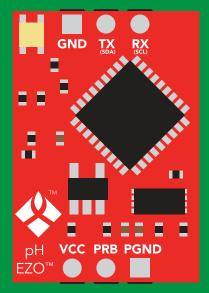
5V	LED ON +2.2 mA	
3.3V	+0.6 mA	

UART mode command quick reference

All commands are ASCII strings or single ASCII characters.

Command	Function		Default state
Baud	change baud rate	pg. 37	9,600
С	enable/disable continuous reading	pg. 24	enabled
Cal	performs calibration	pg. 26	n/a
Export	export calibration	pg. 27	n/a
Factory	enable factory reset	pg. 39	n/a
Find	finds device with blinking white LED	pg. 23	n/a
i	device information	pg. 33	n/a
I2C	change to I ² C mode	pg. 40	not set
Import	import calibration	pg. 28	n/a
L	enable/disable LED	pg. 22	enabled
Name	set/show name of device	pg. 32	not set
pHext	enable/disable extended pH scale	pg. 30	disabled
Plock	enable/disable protocol lock	pg. 38	disabled
R	returns a single reading	pg. 25	n/a
Sleep	enter sleep mode/low power	pg. 36	n/a
Slope	returns the slope of the pH probe	pg. 29	n/a
Status	retrieve status information	pg. 35	enable
т	temperature compensation	pg. 31	25°C
*OK	enable/disable response codes	pg. 34	enable


LED control

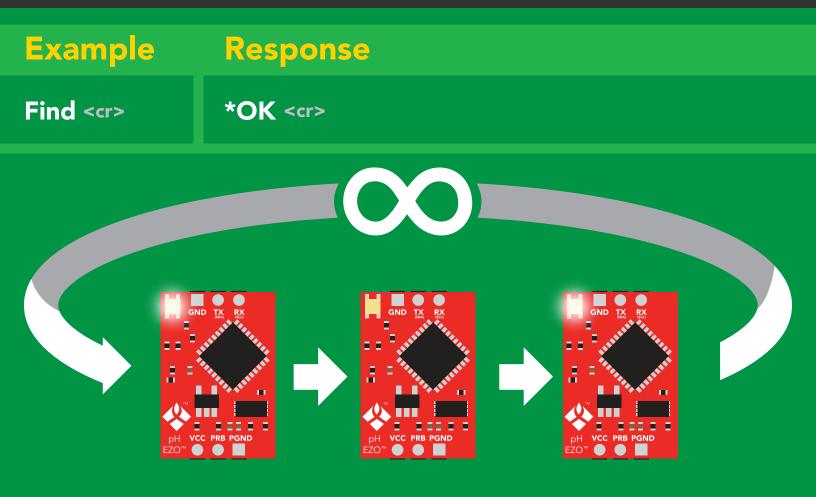

Command syntax

L,1 <cr>> LED on default</cr>

- L,0 <cr>> LED off
- L,? <cr>> LED state on/off?

Example	Response
L,1 <cr></cr>	*OK <cr></cr>
L,0 <cr></cr>	*OK <cr></cr>
L,? <cr></cr>	?L,1 <cr> or ?L,0 <cr> *OK <cr></cr></cr></cr>

L,0



Command syntax

This command will disable continuous mode Send any character or command to terminate find.

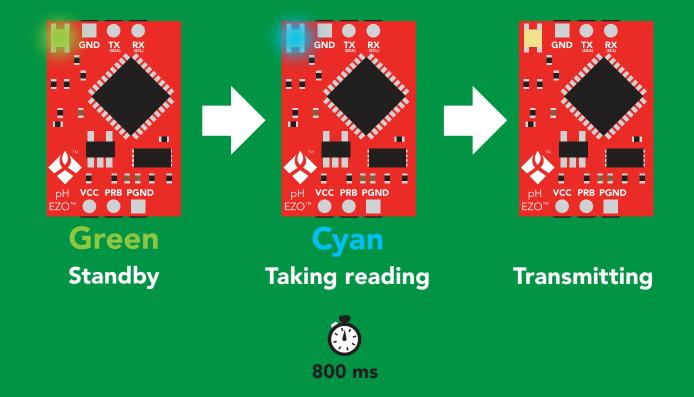
Find <cr> LED rapidly blinks white, used to help find device

Continuous reading mode

Command syntax

- C,1 <cr> enable continuous readings once per second default
- C,n <cr> continuous readings every n seconds (n = 2 to 99 sec)
- C,0 <cr> disable continuous readings
- C,? <cr> continuous reading mode on/off?

Example	Response
C,1 <cr></cr>	*OK <cr> pH (1 sec) <cr> pH (2 sec) <cr> pH (n sec) <cr></cr></cr></cr></cr>
C,30 <cr></cr>	*OK <cr> pH (30 sec) <cr> pH (60 sec) <cr> pH (90 sec) <cr></cr></cr></cr></cr>
C,0 <cr></cr>	*OK <cr></cr>
C,? <cr></cr>	?C,1 <cr> or ?C,0 <cr> or ?C,30 <cr> *OK <cr></cr></cr></cr></cr>



Single reading mode

Command syntax

R <cr> takes single reading

ExampleResponseR <cr>9.560 <cr>*OK <cr>

Calibration

Command syntax

Issuing the cal,mid command after the EZO[™] pH circuit has been calibrated, will clear the other calibration points. Full calibration will have to be redone.

- Cal,mid,n <cr> single point calibration at midpoint
- Cal, low, n <cr> two point calibration at lowpoint
- Cal,high,n <cr> three point calibration at highpoint
- Cal, clear <cr> delete calibration data
- Cal,? <cr> device calibrated?

Example	Response
Cal,mid,7.00 <cr></cr>	*OK <cr></cr>
Cal,low,4.00 <cr></cr>	*OK <cr></cr>
Cal,high,10.00 <cr></cr>	*OK <cr></cr>
Cal,clear <cr></cr>	*OK <cr></cr>
Cal,? <cr></cr>	<pre>?Cal,0 <cr> or ?Cal,1 <cr> or one point ?Cal,2 <cr> or ?Cal,3 <cr> two point</cr></cr></cr></cr></pre> three point <*OK <cr></cr>

Export calibration

Command sy			
Command Syl	Export: U	lse this command to download calibration settings	
Export,? <cr> calibration string info Export <cr> export calibration string from calibrated device</cr></cr>			
Example	Response		
Export,? <cr></cr>	10,120 <cr></cr>	Response breakdown 10, 120 + of strings to export Export strings can be up to 12 characters long,	
		and is always followed by <cr></cr>	
Export <cr></cr>		61 72 <cr> (1 of 10)</cr>	
Export < <r></r>	65 20 61 20	63 6F <cr> (2 of 10)</cr>	
(7 more)			
Export < <r></r>	6F 6C 20 67	75 79 <cr> (10 of 10)</cr>	
Export < <r></r>	*DONE	Disabling *OK simplifies this process	
Export < <r></r>			
GND TX RX	1 2 3 4 5 5 6 7 7 8 9 9 10 10 10 10 10 10 10 10 10 10 10 10 10		

PH VCC PRB PGND EZO™ ● ●

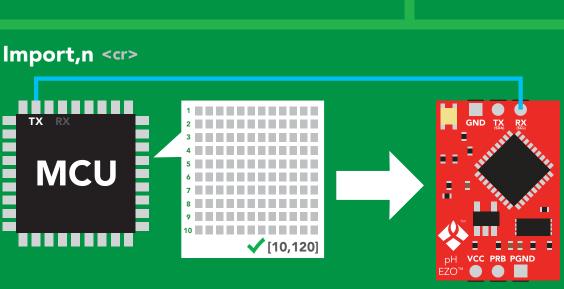
Atlas Scientific

***DONE**

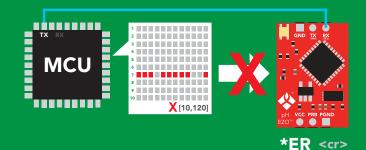
Import calibration

Command syntax

Import: Use this command to upload calibration settings to one or more devices.


Import,n <cr> import calibration string to new device

Example


Response

 Import, 59 6F 75 20 61 72 <cr>
 Import, 65 20 61 20 63 6F <cr>
 (2 of 10)
 *OK <cr>
 *OK <cr>
 :
 :

 Import, 6F 6C 20 67 75 79 <cr>
 (10 of 10)
 *OK <cr>
 *OK <cr>
 *OK <cr>
 :

*OK <<r>
system will reboot

* If one of the imported strings is not correctly entered, the device will not accept the import, respond with *ER and reboot.

Slope

Command syntax

After calibrating a pH probe issuing the slope command will show how closely (in percentage) the calibrated pH probe is working compared to the "ideal" pH probe.

Slope,? <cr> returns the slope of the pH probe

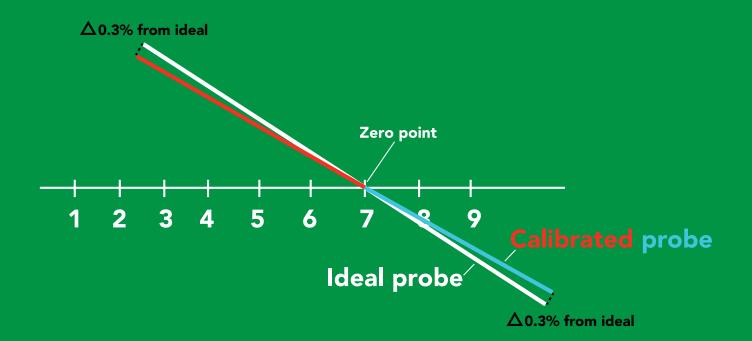
Example Response

Slope,? <cr>

?Slope,99.7,100.3, -0.89 <cr> *OK <cr>

Response breakdown

?Slope,


99.7

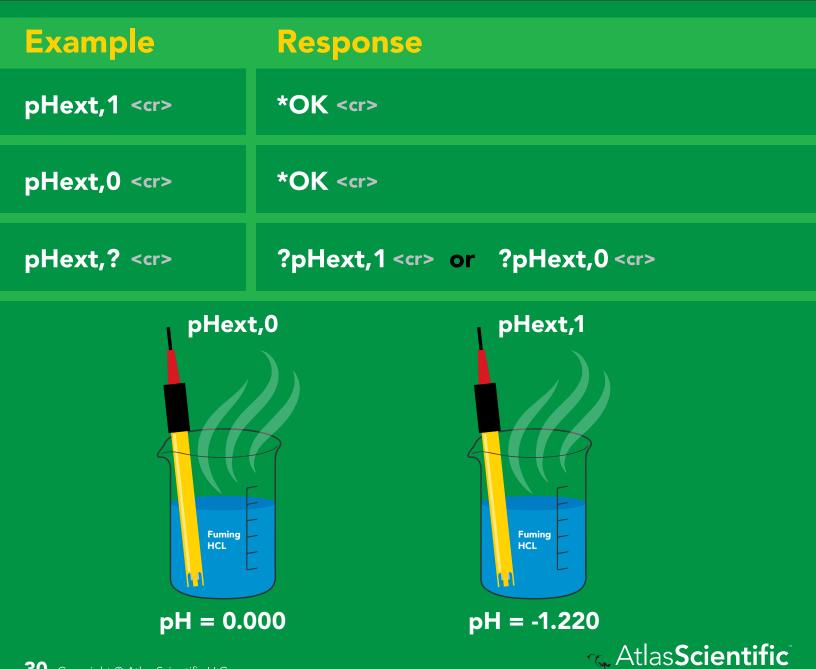
99.7% is how closely the slope of the **acid** calibration line matched the "ideal" pH probe. 100.3% is how closely the slope of the **base** calibration matches the "ideal" pH probe.

100.3

-0.89

This is how many millivolts the zero point is off from true 0.

Extended pH scale


Command syntax

Very strong acids and basses can exceed the traditional pH scale. This command extends the pH scale to show below 0 and above 14.

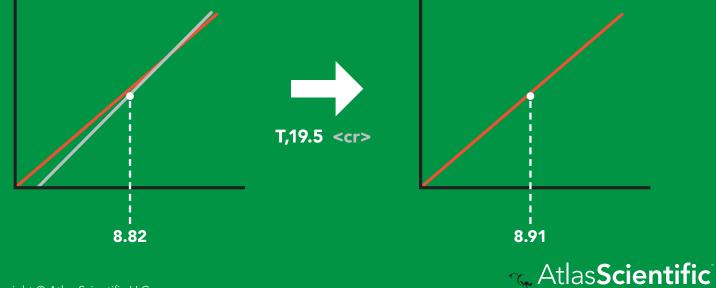
Lowest possible reading: **-1.6** Highest possible reading: **15.6**

pHext,0	<cr></cr>	extended pH scale off (0–14)	default
pHext,1	<cr></cr>	extended pH scale on (-1.6–15	.6)

pHext,? <<r> extended pH scale on/off?

Temperature compensation

Command syntax


Default temperature = 25°C Temperature is always in Celsius Temperature is not retained if power is cut

- T,n <cr> n = any value; floating point or int
- T,? <cr> compensated temperature value?

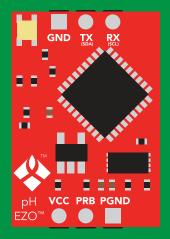
RT,n <cr> set temperature compensation and take a reading*

This is a new command for firmware V2.12

Example	Response
T,19.5 <cr></cr>	*OK <cr></cr>
RT,19.5 <cr></cr>	*OK <cr>8.91 <cr></cr></cr>
T,? <cr></cr>	?T,19.5 <cr> *OK <cr></cr></cr>

Naming device

Command syntax


Do not use spaces in the name

Name,n <cr> set Name, <cr> cle Name,? <cr> sho</cr></cr></cr>	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ars name Up to 16 ASCII characters
Example	Response
Name, <cr></cr>	*OK <cr> name has been cleared</cr>
Name,zzt <cr></cr>	*OK <cr></cr>
Name,? <cr></cr>	<pre>?Name,zzt <cr> *OK <cr></cr></cr></pre>

Name,zzt

*OK <cr>

Name,?

?Name,zzt <cr>
*OK <cr>

Device information

Command syntax

i <cr> device information

<cr></cr>	?i,pH,1.98 <cr></cr>	
Example	Response	

*OK <cr>

Response breakdown

?i,	pH,	1.98
	Device	Firmware

Response codes

Command syntax

- *OK,1 <cr> enable response default
- *OK,0 <cr> disable response
- *OK,? <cr> response on/off?

Example	Response
R <cr></cr>	9.560 <cr> *OK <cr></cr></cr>
*OK,0 <cr></cr>	no response, *OK disabled
R <cr></cr>	9.560 <cr> *OK disabled</cr>
*OK,? <cr></cr>	?*OK,1 <cr> or ?*OK,0 <cr></cr></cr>

Other	response co	des
	_	

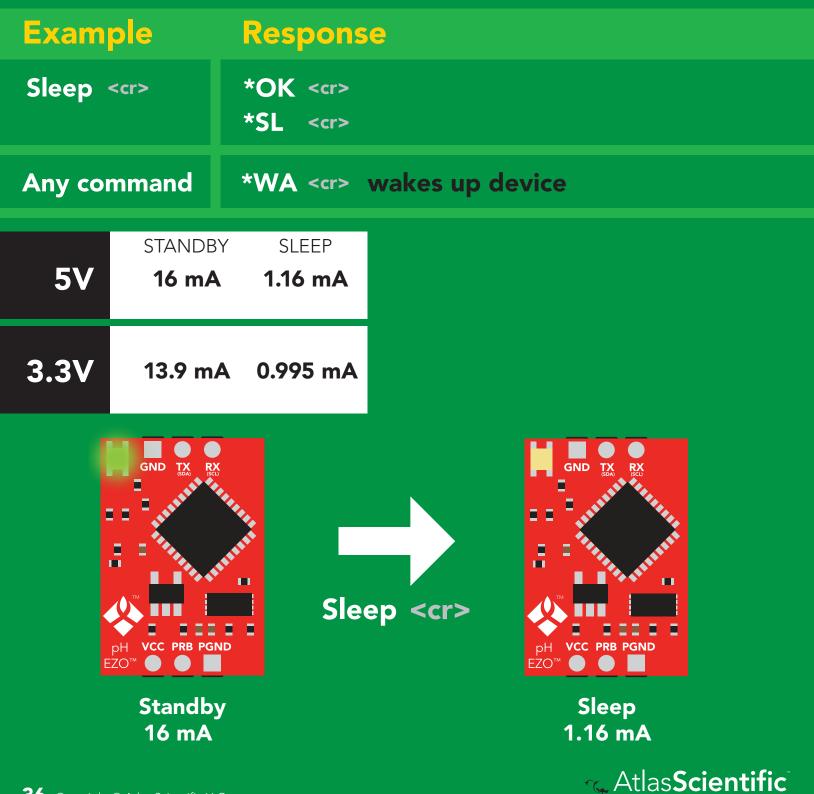
- *ER unknown command
- *OV over volt (VCC>=5.5V)
- *UV under volt (VCC<=3.1V)
- *RS reset
- *RE boot up complete, ready
- *SL entering sleep mode
- *WA wake up

These response codes cannot be disabled

Reading device status

Command syntax

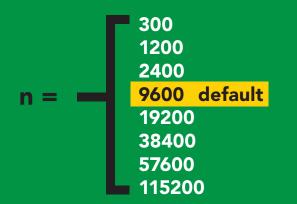
Status <cr> voltage at Vcc pin and reason for last restart



Sleep mode/low power

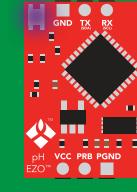
Command syntax

Send any character or command to awaken device.




Change baud rate

Command syntax


Baud,n <cr> change baud rate

Example	Response
Baud,38400 <cr></cr>	*OK <cr></cr>
Baud,? <cr></cr>	?Baud,38400 <cr> *OK <cr></cr></cr>

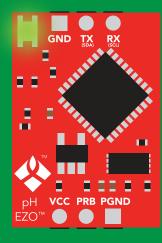
Standby

Baud,38400 <cr>

Changing baud rate

*OK <cr>

Standby

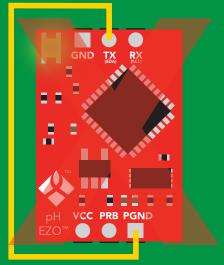

Protocol lock

Command syntax

Locks device to UART mode.

Plock,1 <cr> e Plock,0 <cr> e Plock,? <cr> l</cr></cr></cr>	disable Plock <mark>default</mark>
Example	Response
Plock,1 <cr></cr>	*OK <cr></cr>
Plock,0 <cr></cr>	*OK <cr></cr>
Plock,? <cr></cr>	?Plock,1 < <r> or ?Plock,0 <<r></r></r>

Plock,1


*OK <cr>

I2C,100

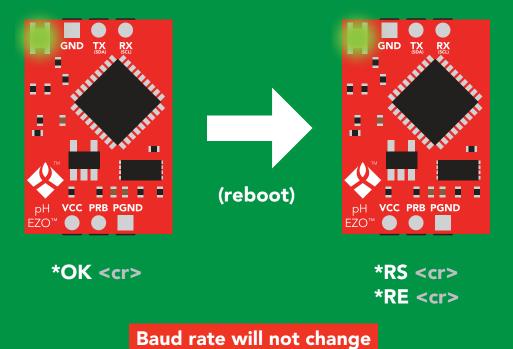
cannot change to I²C *ER <cr>

Short

cannot change to I²C

Factory reset

Command syntax

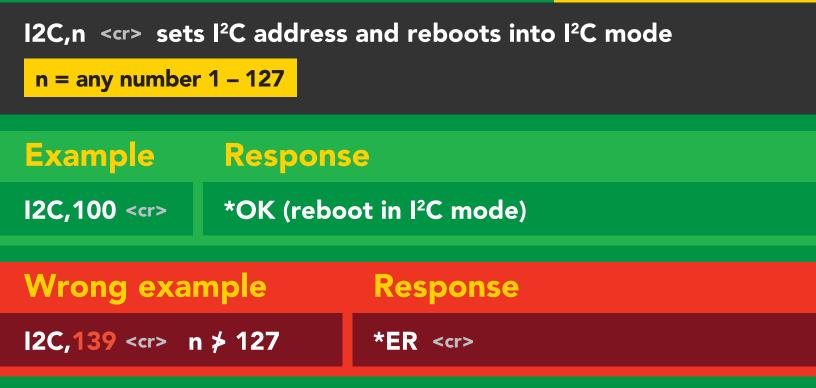

Factory <<r> enable factory reset

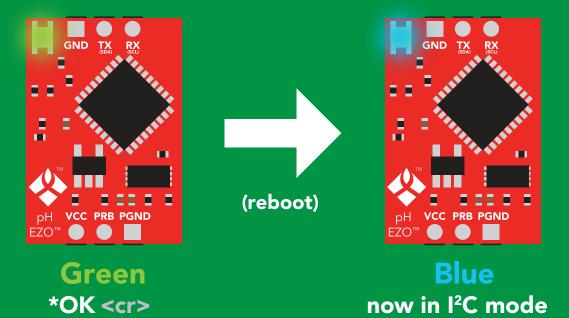
Clears calibration LED on "*OK" enabled

 Example
 Response

 Factory <cr>
 *OK <cr>

Factory <cr>

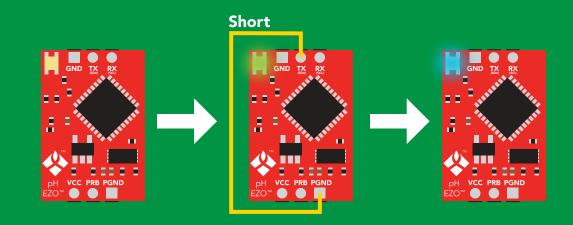


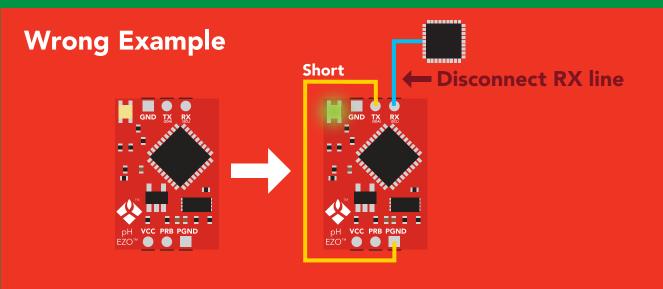

Change to I²C mode

Command syntax

Default I²C address 99 (0x63)

I2C,100




Manual switching to I²C

- Disconnect ground (power off)
- Disconnect TX and RX
- Connect TX to PGND
- Confirm RX is disconnected
- Connect ground (power on)
- Wait for LED to change from Green to Blue
- Disconnect ground (power off)
- Reconnect all data and power

Manually switching to I²C will set the I²C address to 99 (0x63)

Example

1²C mode

The I²C protocol is <u>considerably more complex</u> than the UART (RS–232) protocol. Atlas Scientific assumes the embedded systems engineer understands this protocol.

To set your EZO[™] device into I²C mode click here

Settings that are retained if power is cut

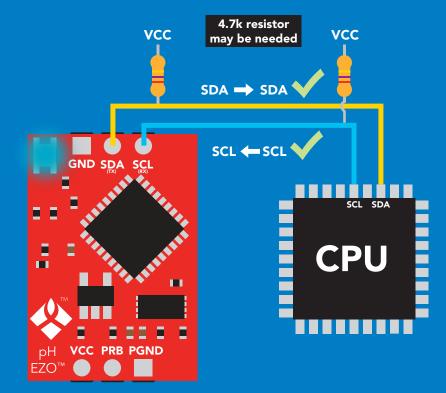
Calibration Change I²C address Hardware switch to UART mode LED control Protocol lock Software switch to UART mode

Settings that are **NOT** retained if power is cut

Find Sleep mode Temperature compensation

I²C mode

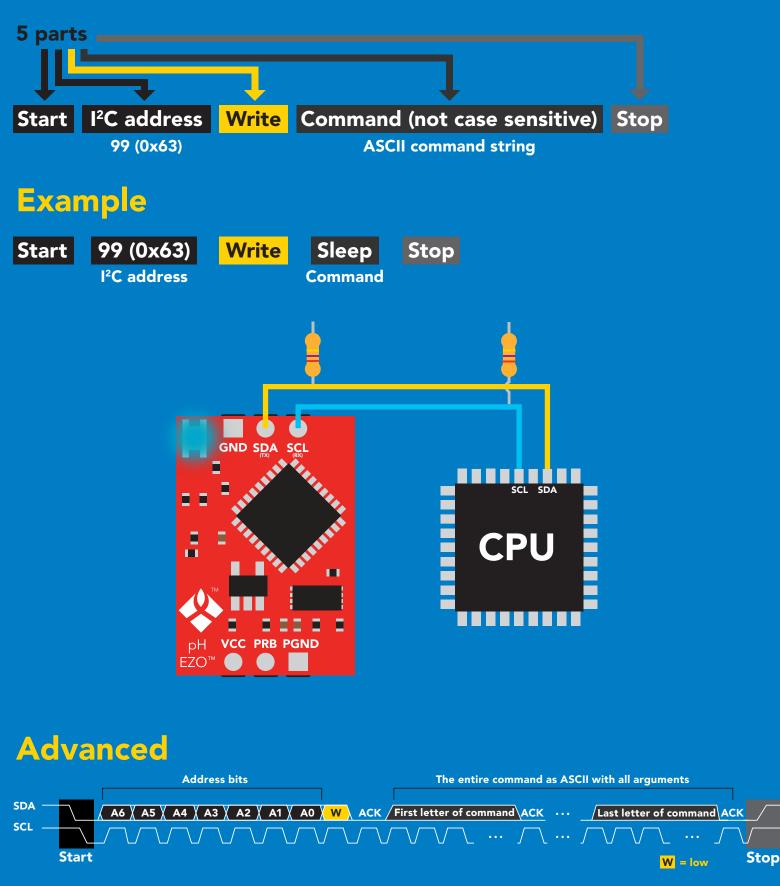
I²C address (0x01 - 0x7F)99 (0x63) default


3.3V - 5.5V Vcc

Clock speed 100 – 400 kHz

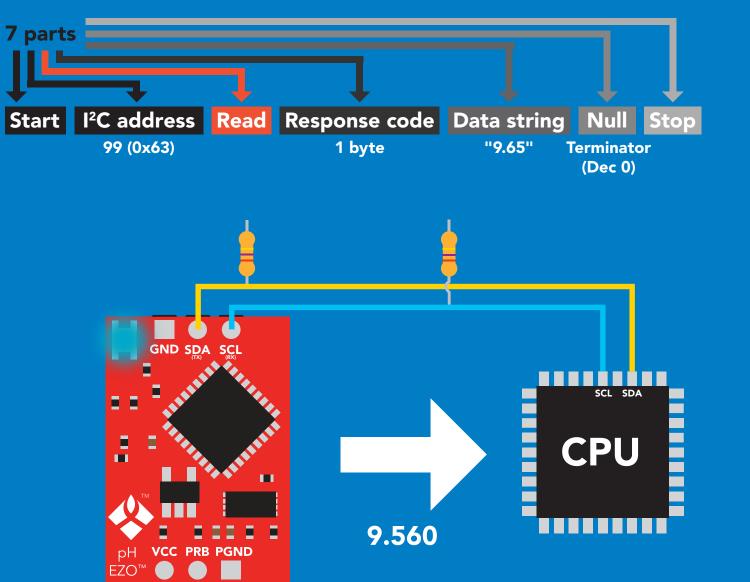
SDA

Data format

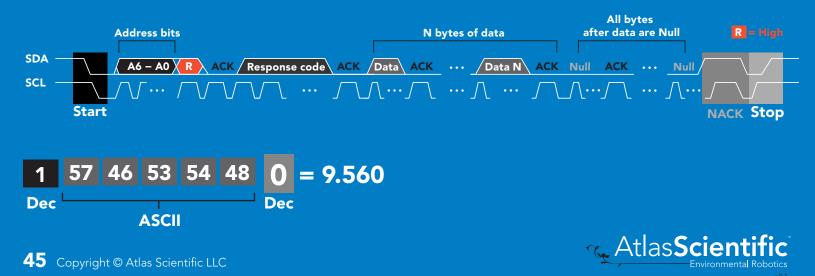

Reading pН Units pН Encoding **ASCII** string Format

Data type **Decimal places** 3 Smallest string 4 characters Largest string

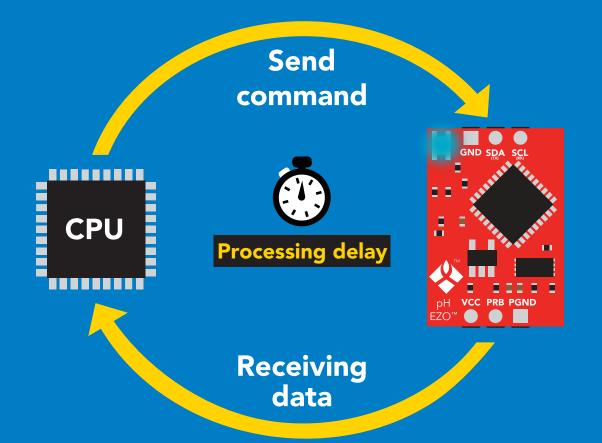
floating point **40 characters**



Sending commands to device



Requesting data from device


Advanced

Response codes

After a command has been issued, a 1 byte response code can be read in order to confirm that the command was processed successfully.

Reading back the response code is completely optional, and is not required for normal operation.

Example

I2C_start; I2C_address; I2C_write(EZO_command); I2C_stop;

delay(300);

I2C_start; I2C_address; Char[] = I2C_read; I2C_stop; If there is no processing delay or the processing delay is too short, the response code will always be 254.

Response codes Single byte, not string

- 255 no data to send
- 254 still processing, not ready
- 2 syntax error
- 1 successful request

LED color definition

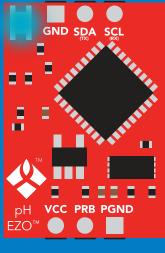
GND SDA SC GND SDA SC FH VCC PRB PGI FH VCC PRB PGI CC stance	Eżo" O	RB POND	GND SDA SCL DIE DE	Image: contraction of the sector	
5V	LED ON +2.2 mA				
3.3V	+0.6 mA				

I²C mode command quick reference

All commands are ASCII strings or single ASCII characters.

Command	Function	
Baud	switch back to UART mode	pg. 65
Cal	performs calibration	pg. 52
Export	export calibration	pg. 53
Factory	enable factory reset	pg. 64
Find	finds device with blinking white LED	pg. 50
i	device information	pg. 59
I2C	change I ² C address	pg. 63
Import	import calibration	pg. 54
L	enable/disable LED	pg. 49
Name	set/show name of device	pg. 58
pHext	enable/disable extended pH scale	pg. 56
Plock	enable/disable protocol lock	pg. 62
R	returns a single reading	pg. 51
Sleep	enter sleep mode/low power	pg. 61
Slope	returns the slope of the pH probe	pg. 55
Status	retrieve status information	pg. 60
т	temperature compensation	pg. 57

LED control


Command syntax

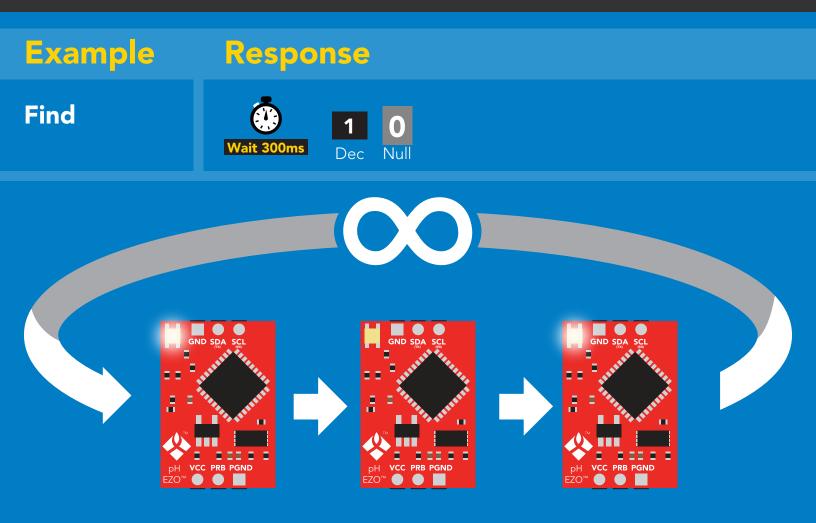
L,1 LED on default

- L,0 LED off
- LED state on/off? L,?

L,1

GND SDA SCL VCC PRB PGND EZO™

L,0


Find

300ms 🕐 processing delay

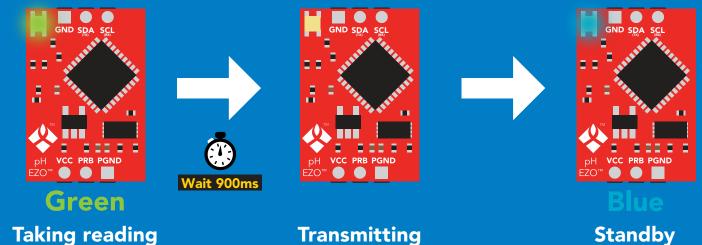
Command syntax

This command will disable continuous mode Send any character or command to terminate find.

Find LED rapidly blinks white, used to help find device

Taking reading

Command syntax


900ms 🕐 processing delay

return 1 reading R

R

Example Response

> 9.560 0 Null ASCII Dec

Taking reading

Transmitting

Calibration

900ms 🕐 processing delay

Command syntax

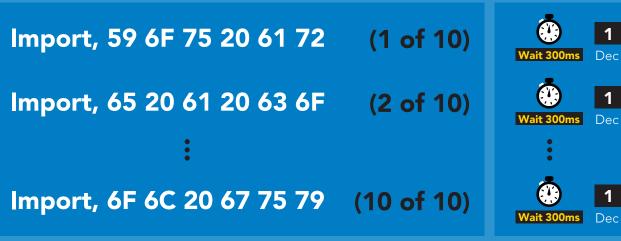
Issuing the cal,mid command after the EZO[™] pH circuit has been calibrated, will clear the other calibration points. Full calibration will have to be redone.

- Cal,mid,n single point calibration at midpoint
- Cal, low, n two point calibration at lowpoint
- Cal,high,n three point calibration at highpoint
- Cal, clear delete calibration data
- Cal,? device calibrated?

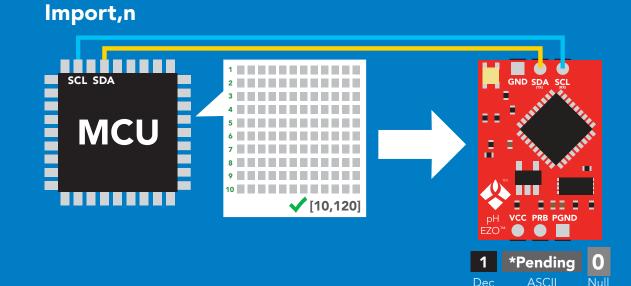
Export calibration

300ms 🕐 processing delay Command syntax Export: Use this command to download calibration settings calibration string info Export,? export calibration string from calibrated device **Export** Example Response Export,? 10,120 **Response breakdown** Null 10, 120 Dec ASCII Wait 300ms # of strings to export # of bytes to export Export strings can be up to 12 characters long 59 6F 75 20 61 72 (1 of 10) $(\mathbf{0})$ **Export** Null Dec ASCII Wait 300ms 65 20 61 20 63 6F (2 of 10)0 **Export** ASCI Dec • (7 more) 6F 6C 20 67 75 79 (10 of 10) 0 Export Nul ASCII Wait 300ms Dec ***DONE** Export Dec ASCII Nul

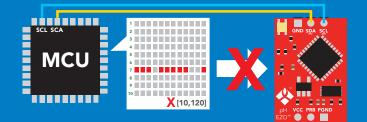
Import calibration 300ms (*) processing delay


Command syntax

Import: Use this command to upload calibration settings to one or more devices.


Import,n import calibration string to new device

Example


Response

reboot

system will reboot

* If one of the imported strings is not correctly entered, the device will not accept the import and reboot.

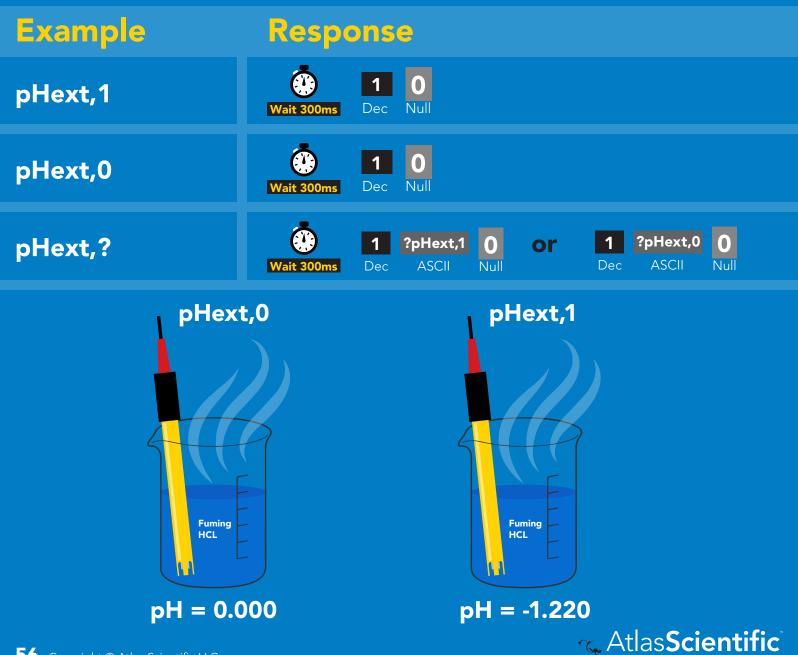
300ms 💮 processing delay

Command syntax

After calibrating a pH probe issuing the slope command will show how closely (in percentage) the calibrated pH probe is working compared to the "ideal" pH probe.

returns the slope of the pH probe Slope,? Example Response Slope,? ?Slope,99.7,100.3, -0.89 1 Dec ASCII Response breakdown 99.7 -0.89 ?Slope, 100.3 99.7% is how closely the 100.3% is how closely the This is how many millivolts slope of the **acid** calibration slope of the **base** calibration the zero point is of<u>f from</u> line matched the "ideal" matches the "ideal" pH true 0. pH probe. probe. Δ 0.3% from ideal Zero point 2 3 5 6 9 Δ **Calibrated** probe Ideal probe $\Delta 0.3\%$ from ideal

Extended pH scale

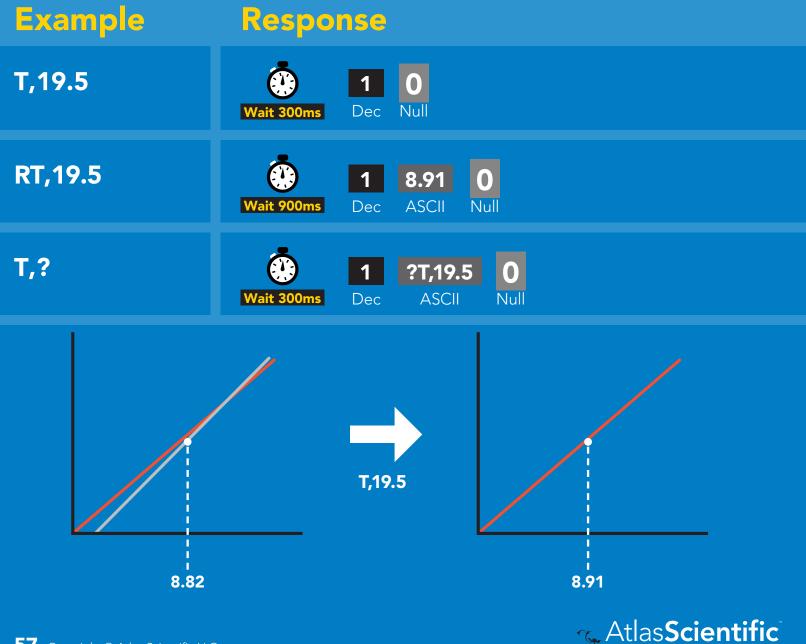

300ms 💮 processing delay

Very strong acids and basses can exceed the traditional pH scale. This command extends the pH scale to show below 0 and above 14.

Command syntax

Lowest possible reading: **-1.6** Highest possible reading: **15.6**

- pHext,0 extended pH scale off (0–14) default
- pHext,1 extended pH scale on (-1.6–15.6)
- pHext,? extended pH scale on/off?


Temperature compensation

Command syntax

Default temperature = 25°C Temperature is always in Celsius Temperature is not retained if power is cut

- T,n n = any value; floating point or int 300ms (*) processing delay
- T,? compensated temperature value?
- **RT,n** set temperature compensation and take a reading*

This is a new command for firmware V2.12

Naming device

Command syntax

300ms 🕐 processing delay

Do not use spaces in the name

Name, clea	name n = _ rs name w name	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Up to 16 ASCII characters
Example	Response	,
Name,	Wait 300ms Dec	
Name,zzt	Wait 300ms Dec	0 Null
Name,?	Image: Wait 300msImage: Dec	?Name,zzt ASCII Null
Na	me,zzt	Name,?
PH EZO'	GND SDA SCL	GND SDA SCL H VCC PRB PGND EZO
	10	1 ?Name,zzt 0

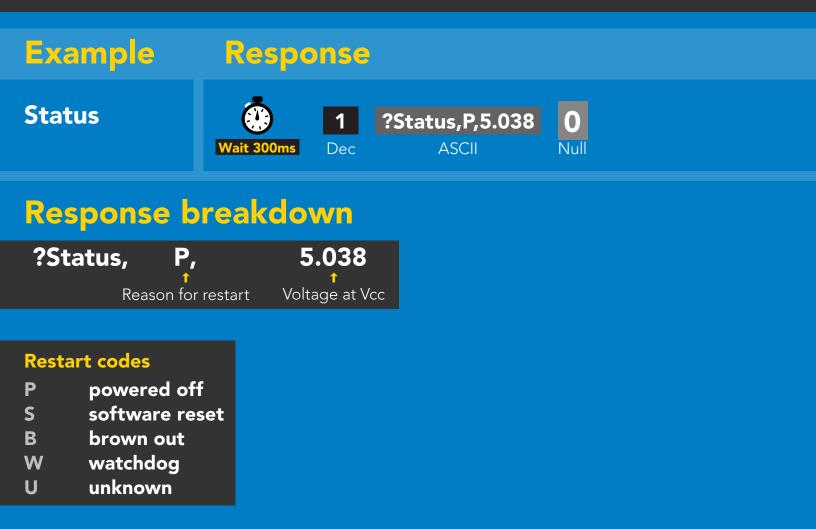
Device information

Command syntax

300ms 🕐 processing delay

i device information

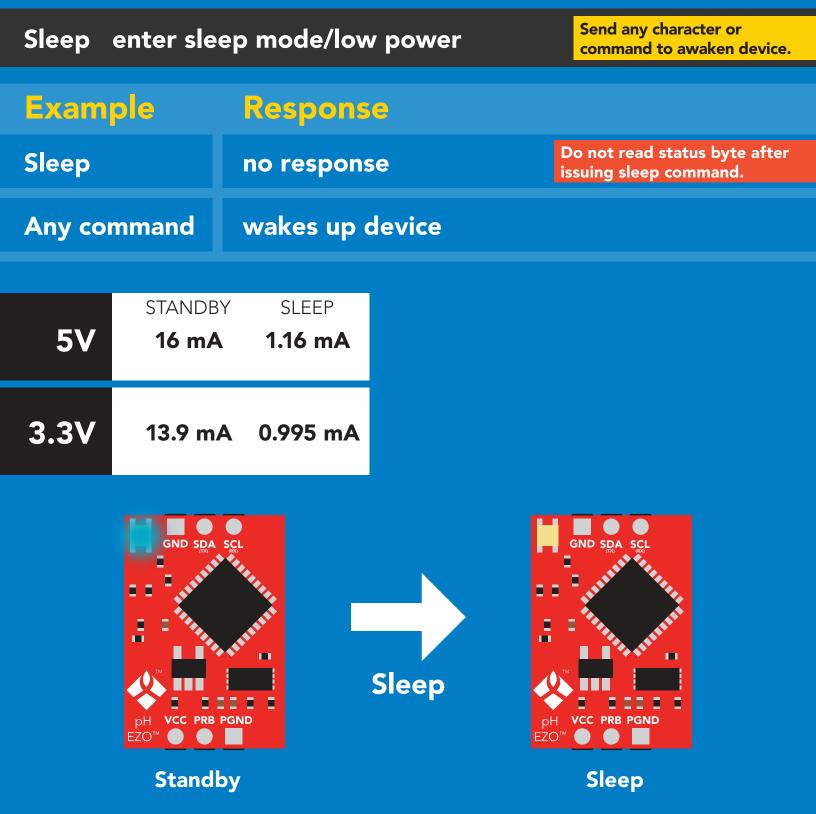
Response breakdown

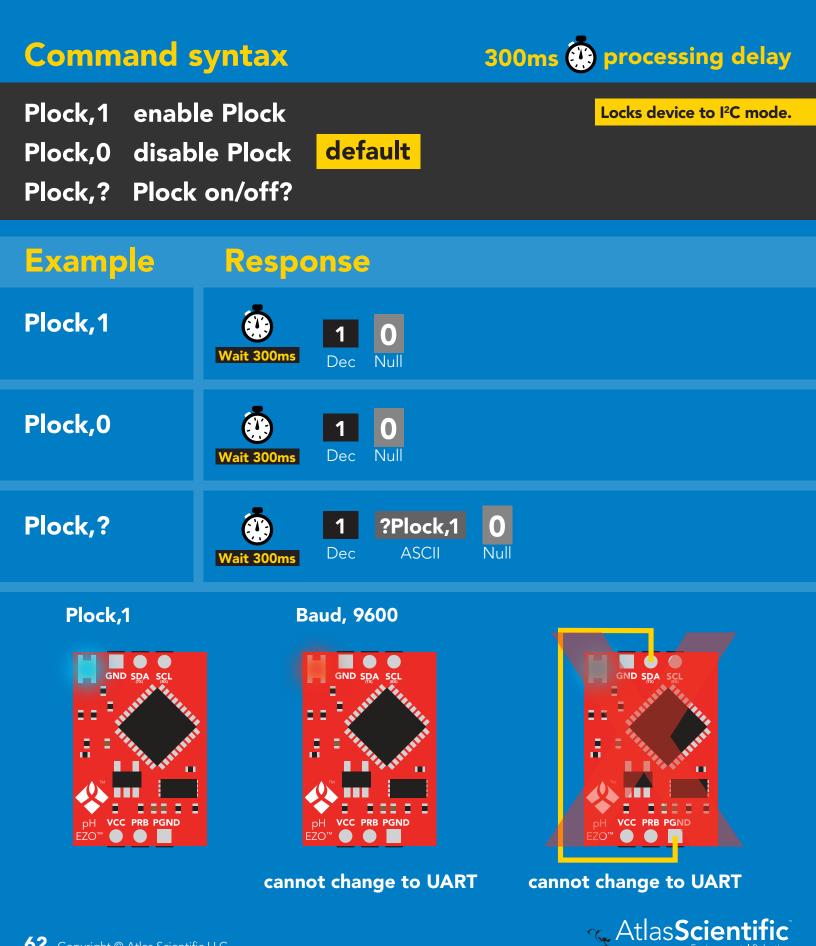


Reading device status

Command syntax

300ms 💮 processing delay


Status voltage at Vcc pin and reason for last restart


Sleep mode/low power

Command syntax

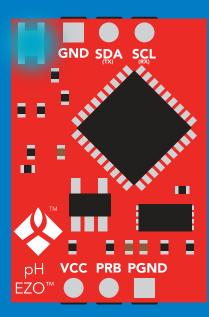
Protocol lock

I²C address change

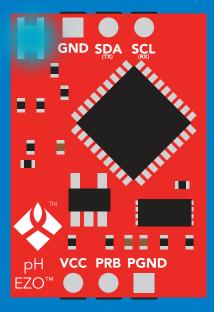
Command syntax

300ms 💮 processing delay

I2C, n sets I²C address and reboots into I²C mode

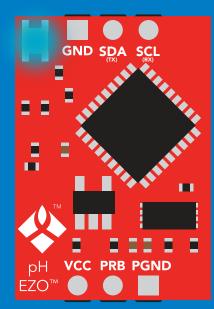

Warning!


Changing the I²C address will prevent communication between the circuit and the CPU until the CPU is updated with the new I²C address.

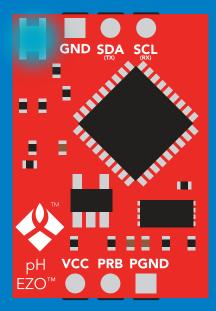

Default I²C address is 99 (0x63).

n = any number 1 – 127

I2C,100



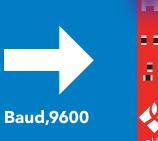
Factory reset


Command s	yntax	Factory reset will not take the device out of I ² C mode.		
Factory enable factory rese			I ² C address will not change	
Example	Response	<u>)</u>		
Factory	device rebo (no response giv			
Clears calibration				

Clears calibration LED on Response codes enabled

Factory


Change to UART mode

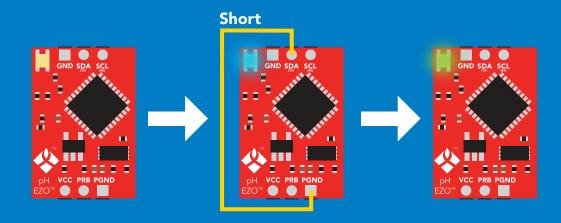

Command syntax

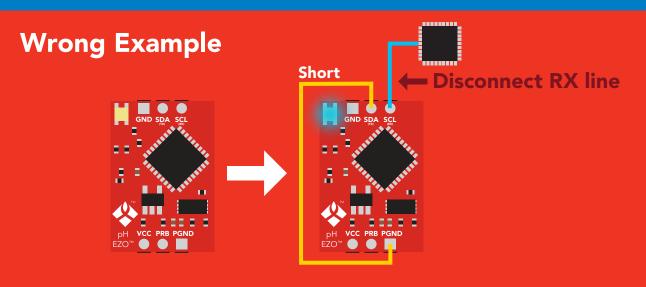
Baud,n switch from I²C to UART

ExampleResponseBaud,9600reboot in UART mode
(no response given)

	300
	1200
	2400
n = 💻	9600
	19200
	38400
	57600
	115200

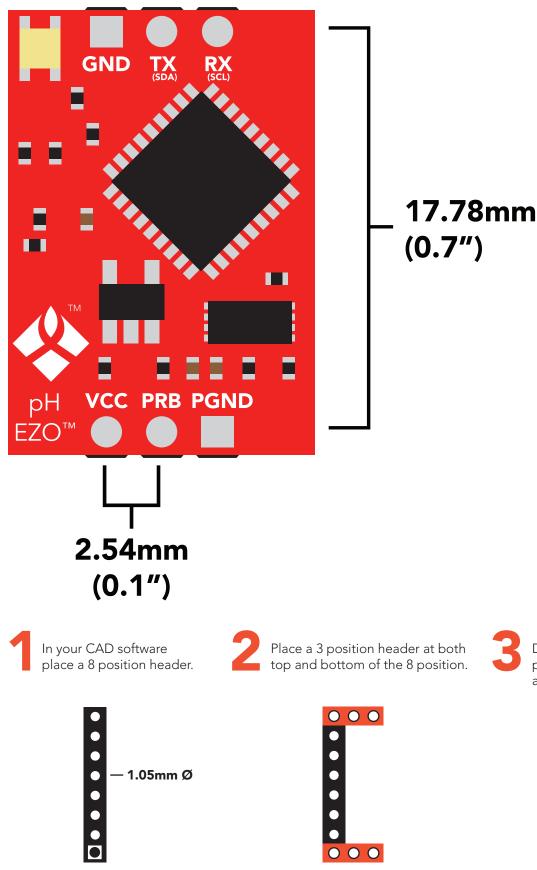
Changing to UART mode

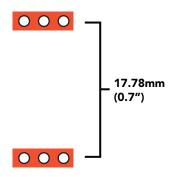




Manual switching to UART

- Disconnect ground (power off)
- Disconnect TX and RX
- Connect TX to PGND
- Confirm RX is disconnected
- Connect ground (power on)
- Wait for LED to change from Blue to Green
- Disconnect ground (power off)
- Reconnect all data and power


Example



EZO[™] circuit footprint

Delete the 8 position header. The two 3 position headers are now 17.78mm (0.7") apart from each other.

Datasheet change log

Datasheet V 5.9

Revised naming device info on pages 32 & 58.

Datasheet V 5.8

Revised calibration info and art on pages 11 & 12.

Datasheet V 5.7

Added new command: "Extended pH Scale" pages 30 (UART) & 56 (I²C).

Datasheet V 5.6

Revised information on the slope command found on pages 29 & 54.

Datasheet V 5.5

Revised artwork within datasheet.

Datasheet V 5.4

Moved the Default state to pg 14.

Datasheet V 5.3

Revised response for the sleep command in UART mode on pg 35.

Datasheet V 5.2

Revised calibration theory on page 11, and added more information on the Export calibration and Import calibration commands.

Datasheet V 5.1

Revised isolation schematic on pg 10.

Datasheet V 5.0

Added more information about temperature compensation on pages 29 & 53.

Datasheet V 4.9

Changed "Max rate" to "Response time" on cover page.

Datasheet V 4.8

Added new command:

"RT,n" for Temperature compensation located on pages 29 (UART) & 53 (I²C). Added firmware information to Firmware update list.

Datasheet V 4.7

Removed note from certain commands about firmware version.

Datasheet V 4.6

Added information to calibration theory on pg 7.

Datasheet V 4.5

Revised definition of response codes on pg 44.

Datasheet V 4.4

Added resolution range to cover page.

Datasheet V 4.3

Revised isolation information on pg 9.

Datasheet V 4.2

Revised Plock pages to show default value.

Datasheet V 4.1

Added new commands: "Find" pages 23 (UART) & 46 (I²C).

"Export/Import calibration" pages 27 (UART) & 49 (I²C).

Added new feature to continous mode "C,n" pg 24.

Datasheet V 4.0

Added accuracy range on cover page, and revised isolation info on pg. 10.

Datasheet V 3.9

Revised calibration theory on pg. 7.

Datasheet V 3.8

Revised entire datasheet.

Firmware updates

- V1.5 Baud rate change (Nov 6, 2014)
- Change default baud rate to 9600
- V1.6 I²C bug (Dec 1, 2014)
- Fixed I²C bug where the circuit may inappropriately respond when other I²C devices are connected.
- V1.7 Factory (April 14, 2015)
- Changed "X" command to "Factory"

V1.95 – Plock (March 31, 2016)

Added protocol lock feature "Plock"

V1.96 – EEPROM (April 26, 2016)

• Fixed bug where EEPROM would get erased if the circuit lost power 900ms into startup

V1.97 – EEPROM (Oct 10, 2016)

• Added the option to save and load calibration.

V1.98 - EEPROM (Nov 14, 2016)

• Fixed bug during calibration process.

V2.10 – (May 9, 2017)

- Added "Find" command.
- Added "Export/import" command.
- Modified continuous mode to be able to send readings every "n" seconds.

V2.11 – (June 12, 2017)

• Fixed "I" command to return "pH" instead of "PH".

V2.12 – (April 16, 2018)

- Fixed "cal,clear" was not clearing stored calibration in EEPROM.
- Added "RT" command to Temperature compensation.

V2.13 – (June 25, 2019)

- Added calibration offset to slope.
- Added calibration with temperature compensation.

V2.14 – (June 10, 2020)

• Added extended pH scale.

v2.15 - (Nov 3, 2021)

• Internal update for new part compatibility.

v2.16 - (Nov 19, 2021)

• Fixed bug in I2C mode with timing and sleep mode.

Warranty

Atlas Scientific[™] Warranties the EZO[™] class pH circuit to be free of defect during the debugging phase of device implementation, or 30 days after receiving the EZO[™] class pH circuit (which ever comes first).

The debugging phase

The debugging phase as defined by Atlas Scientific[™] is the time period when the EZO[™] class pH circuit is inserted into a bread board, or shield. If the EZO[™] class pH circuit is being debugged in a bread board, the bread board must be devoid of other components. If the EZO[™] class pH circuit is being connected to a microcontroller, the microcontroller must be running code that has been designed to drive the EZO[™] class pH circuit exclusively and output the EZO[™] class pH circuit data as a serial string.

It is important for the embedded systems engineer to keep in mind that the following activities will void the EZO[™] class pH circuit warranty:

- Soldering any part of the EZO[™] class pH circuit.
- Running any code, that does not exclusively drive the EZO[™] class pH circuit and output its data in a serial string.
- Embedding the EZO[™] class pH circuit into a custom made device.
- Removing any potting compound.

Reasoning behind this warranty

Because Atlas Scientific[™] does not sell consumer electronics; once the device has been embedded into a custom made system, Atlas Scientific[™] cannot possibly warranty the EZO[™] class pH circuit, against the thousands of possible variables that may cause the EZO[™] class pH circuit to no longer function properly.

Please keep this in mind:

- 1. All Atlas Scientific[™] devices have been designed to be embedded into a custom made system by you, the embedded systems engineer.
- 2. All Atlas Scientific[™] devices have been designed to run indefinitely without failure in the field.
- 3. All Atlas Scientific[™] devices can be soldered into place, however you do so at your own risk.

Atlas Scientific[™] is simply stating that once the device is being used in your application, Atlas Scientific[™] can no longer take responsibility for the EZO[™] class pH circuits continued operation. This is because that would be equivalent to Atlas Scientific[™] taking responsibility over the correct operation of your entire device.

