periCORE Development Kit

Full Featured Firmware Development Setup

“Pperi

Seamless loT Connectivity

Doc-No.: PRN.100.378 rev: 4 May 3, 2022

©perinet May 3, 2022

Document Information

Title periCORE Development Kit

Subtitle Full Featured Firmware Development Setup
Type User Guide

Status Release

Version 4

Date May 3, 2022

Disclosure Restriction

Intellectual property rights in the products, names, logos and designs included in this docu-
ment may be held by Perinet or third parties. Copying, reproduction, modification or disclosure
to third parties of this document or any part thereof is only permitted with the express written
permission of Perinet.

The information contained herein is provided “as is” and Perinet assumes no liability for its use.
No warranty, either express or implied, is given, including but not limited to, with respect to
the accuracy, correctness, reliability and fitness for a particular purpose of the information.
This document may be revised by Perinet at any time without notice. For the most recent
documents, visit https:/perinet.io.

Copyright © Perinet GmbH.

periCORE Development Kit User Guide, rev: 4 Page 2
Doc.-No.:PRN.100.378

©peri May 3, 2022

Contents
1 Overview 5
2 Hardware Architecture 8
2.1 Power Supply e e 9
2.2 Network Interfaces e 9
2.3 Sensor/actuatoriInterfaceo 11
24 Debuginterface e 12
2.5 UART Interface e e 12
3 System Architecture 13
3.1 Overview e e e e e e 13
3.2 HostPCsetup e e 14
3.3 periCORE networkinterface 14
3.4 Debuginterface e 15
3.5 UARTIinterface e 16
4 Software Development 18
4.1 periCORE Software APl structure., 18
4.2 seve OS . .. e 18
4.3 Extend libperiCORE Network Services 19
44 WebUserlInterface e 25
5 Troubleshooting 32
6 Labeling and Ordering 34
7 Contact & Support 35
A Development Board 36
B Network Daughterboards 44
B.1 M8 Hybrid Male Connector Daughterboard 44
B.2 M8 Hybrid Female Connector Daughterboard 47
B.3 HARTING T1 Industrial Connector Daughterboard 50
B.4 ixDaughterboard e 53
B.5 RJ45 Daughterboard 56
C Sensor/Actuator Daughterboards 58
C.1 PT100 Daughterboard e 58
C.2 0-10V Daughterboard 60
C.3 GPIO Daughterboard e 62
D List of Figures 63
E List of Listings 65
periCORE Development Kit User Guide, rev: 4 Page 3

Doc.-No.:PRN.100.378

©peri May 3, 2022

F Glossary 66
G References 69
periCORE Development Kit User Guide, rev: 4 Page 4

Doc.-No.:PRN.100.378

©peri

May 3, 2022

1 Overview

loT Platform

& <

Developer Computer

periMICA

JTag

L

periSTART media converter

Figure 1: Development Kit Overview

The periCORE development kit is a set of tools
used to build and test custom lloT sensor
and actuator applications that can be imple-
mented with the periCORE SPE communication
module. The purpose is to have an lloT envi-
ronment that allows to implement new appli-
cations, efficiently.

The first section (2) presents the periCORE de-
velopment board hardware architecture. All
the interfaces available in the module can be
easily accessed using the development board
peripherals, which is shown in here.

In the following section (3) the user will be
guided to configure and use the software
tools provided. It includes the periCORE SDK
and the pericoredbg Container used to build

Targeted Applications

Industrial sensors
Industrial control

loT / lloT

Remote sensor access
Building automation

and debug customized periCORE based appli-
cations without requiring to install any addi-
tional software which is a great benefit for the
developers.

Information on how to actually implement ap-
plications for periCORE based devices is then
given in section 4. It basically focuses on
how to extend network services provided by
libperiCORE and how to customize the Web Ul
frontend.

Besides that a powerful tool indirectly pre-
sented in the kit is the periMICA that can
run typical field lloT functions through its
lightweight containers e.g. MQTT Broker Con-
tainer (available for download in https://
perinet.io/downloads).

Key Features

Fully qualified Industrial loT module
Firmware development framework
Provided TCP/IPvé stack

Event-based minimal operating system
arm Cortex®-R4 250MHz processor
core

periCORE Development Kit User Guide, rev: 4
Doc.-No.:PRN.100.378

Page 5

https://perinet.io/downloads
https://perinet.io/downloads

©peri

May 3, 2022
e 32-MBit flash memory 16.7
for persistent storage
e Up to 3x 100BASE-T1 Single Pair Ether-
net Phys (IEEE 802.3bw compatible) gpp 2000000002 "'D"
¢ Integrated Ethernet switching core
e Compact form factor goop
e Operated with 24V "%nn gooo -
¢ Integrated 3V3 power supply 0 g ulj -
™ sofl
\ i]
a 181
Interfaces ¥\ Dﬂnnnnnﬂﬂnunﬂml]
e 2 x 100BASE-T1 Phy (IEEE 802.3bw)
¢ 1 x Combined 100BASE-T1/TX Phy 1.35
—
o

1 x MAC to arm processor core (Fig-

ure 2)
e 1 x UART
e 1x12C
e 2xGPIO
Network IWatchdog I Peripheral
Port 0f100BASE-T1 i
“lphy Controller ’W 12C [
Port 1 d
L{100BASE-T2 Switch
Phy Core F‘Y MACY S <P UART k_b
Port 41100BASE-TX/TL | Y]
— . KR
Combined Phy l32-MBit FIashI B\ﬁ GPIO 1[4
If :4 GPIO 24>+
Power | 24y 3.3V
periCORE A v

Figure 2: periCOREs hardware blocks.

Operational Parameters

e Operating voltage: 24 VDC

e Power supply: 3.3 VDC (up to 100mA)
e Temperature range: -40°C to +85°C

e Power consumption: 0.6 W

Package

Dimensions: 16.7 x 13 x 3.8 mm
(Figure 3)

Mounting: Solder pads, 73 LGA-Pads, Pat-
tern 13 x 10, Pitch 1.27 mm

Figure 3: periCOREs dimensions in mm.

Compliance

e RoHS
o WEEE

Security

NIST compliant TLS implementation
Role Based Access Control (RBAC)
Certificate based client authentication
AES encryption algorithm

X.509 certificates and PKIX path valida-
tion

Elliptic Curve Cryptography (ECC)

Software Library libperiCORE

e Rapid firmware development with peri-
CORE Development Kit (see Figure 4)

e mMDNS/LLMNR for name resolving

e DNS-SD for automated service discov-
ery

e TCP/UDP endpoints

e TLS-based secure communication end-
points

e RESTful API

e Secure MQTT-client for publishing sen-
sor values or subscribing to actuator
commands

periCORE Development Kit User Guide, rev: 4
Doc.-No.:PRN.100.378

Page 6

©peri May 3, 2022

e HTTPs server including Web based Ul séve OS
e Product lifecycle features
e C++20 standard conform

periCORE based Custom Application

IHTTPIMQTT
' . Sensor
EndPoint . 12
Component i

Component

UART
| V=

[9)
(=S @)

Device
Driver
Component

0

P102

LLMNR Device
DNS-SD Config
[Watchdog |//1ifeCycle Security ['spa Jedpsa[Ecc

i Flash | TLS | x509 [AES |TRNG
libperiCORE L—J ,
- Perinet provided () Customer provided

Figure 4: The software architecture with Cus-
tom Application template, provided by Peri-
net.

periCORE Development Kit User Guide, rev: 4 Page 7
Doc.-No.:PRN.100.378

©peri May 3, 2022

2 Hardware Architecture

Figure 5: Top view on periCORE development board with all jumpers in default position, in-
cluding all daughterboards.

The periCORE SPE communication module is an electronic device that provides sensor commu-
nication and interaction via Single Pair Ethernet interface. The periCORE development board is
intended to simplify the development of periCORE based applications. The hardware design
of the board is kept modular from both network communication and sensor side in order to
support a wide range of applications.

In this case, modularity means that the connectors for either network communication side
and sensor side are provided by a separate daughterboard. This allows the user to evaluate
multiple different network and sensor interfaces on the periCORE development board.

The relevant parts of the board are (5):
1. periCORE module
2. Input power connector (J1) and on-off button (X1)

3. Header connectors (J12, J13, J14 and J15) with different voltage levels (24V, 5V, 3.3V
and GND)

Sensor/actuator daughterboard (designated with M2)
Header connector (J16) for accessing UART signals

periCORE device label information with mDNS name.

N oo oo

. JTAG connector (J10) for debug purposes

periCORE Development Kit User Guide, rev: 4 Page 8
Doc.-No.:PRN.100.378

©peri May 3, 2022

8. Network communication daughterboards (PORTO, PORT1, and PORT4) with network link
status LED

Also see appendix A for all hardware schematics of the development board.

2.1 Power Supply

The nominal supply voltage for the development board is 24V DC which is internally converted
to 3.3V. On the development board, an additional voltage regulator (U4) is used for generating
5V. There are three LEDs (D7, D8, and D9) which are indicating the presence of 24V, 5V, and
3.3V, respectively. Power to the periCORE development board can be supplied in two different
ways:

¢ via a PCB header connector (designated as J1 on the board)

e over the network cable where the power to the board comes via network communica-
tion daughterboards

2.1.1 Power over J1 connector

J1 is a male PCB header connector with a 3.5mm pitch. LED D6 indicates the presence of the
voltage on J1. The supply voltage is 24V DC and the polarity of the connector is shown on
the board overlay.

2.1.2 Power over network communication daughter board

One of the main features of the periCORE is the ability to daisy chain the sensor nodes from
Perinet Smart Components, hence other periCORE based devices. This means that power and
communication lines are coming to one node and going from that node to the next node, and
so on. Development and prototyping of such applications is possible with this development
board since the pins for incoming and outcoming power to and from the board are allocated
in the footprint of the network communication daughterboard (see Figure 7).

If the power for the development board is provided by the network communication daughter-
board the LED for indicating the presence of the input voltage should be implemented on the
daughterboard itself. More information about the network communication daughterboards
can be found in section 2.2.1

2.1.3 On-Off Button

Pressing the On-Off button (X1) switches the 24V_core voltage domain off (which subse-
qguently switches 5V and 3.3V off). This button can be used for performing a power cycle
of the periCORE and its peripherals.

2.2 Network Interfaces

periCORE supports the following Ethernet MDI:

periCORE Development Kit User Guide, rev: 4 Page 9
Doc.-No.:PRN.100.378

©peri May 3, 2022

e 100BASE-T1 - Ethernet over a single twisted pair
e 100BASE-TX - Ethernet over two twisted pairs

There are 3 ports for 100BASE-T1 and 100BASE-TX - PORTO, PORT1, and PORT4 as can be seen
under number 8 in Figure 5. PORTO0 and PORT1 support only 100BASE-T1, while PORT4 supports
(only one at a time) both 100BASE-T1 and 100BASE-TX. The aforementioned ports are avail-
able on the development board in the form of slots where the user can place a daughterboard
with an appropriate connector.

2.2.1 Network communication daughterboard

The network communication daughterboards are carrier boards for different connectors. Fig-
ure 6 shows the drawing of a daughterboard with M8 Hybrid Male connector. The daughter-

board has two rows of male header pins which are fitted in the counterpart female headers
on the development board.

Figure 6: M8 Hybrid Male daughterboard.

The pinout of the network communication daughterboard is shown below in Figure 7.

periCORE Development Kit User Guide, rev: 4 Page 10
Doc.-No.:PRN.100.378

©peri May 3, 2022

N.C. LED-
N.C. LED+
VOUT VIN
GND GND

RD_P TD_N
RD_N TD_P

N.C. N.C.
N.C. N.C.
N.C. N.C.

Figure 7: Network communication daughterboard pinout.

As can be seen, the daughterboard interface uses the following signals:

Differential pair TD (TD_N and TD_P) for data transmission/reception in 100BASE-T1.
With 100BASE-TX. This pair is only used for data transmission.

Differential pair RD (RD_N and RD_P) is used for data reception in 100BASE-TX.
LED+ and LED- are PHY signals used to control the link indicator LEDs.

VIN is a positive terminal of the external power supply that is supplied to the develop-
ment board via the connector (e.g. daughterboard).

VOUT is a positive power supply terminal that is supplied from the development board
to the daughterboard connector. On the development board, this signal is directly con-
nected with the main power supply for the periCORE.

N.C. means not connected. The function of these pins is not defined at the moment and
they are saved for future use.

The difference between the daughterboards for 100BASE-TX and 100BASE-T1 is that the
former use both TD and RD differential pairs, while the latter use only TD.

2.3

Sensor/actuator Interface

The development board has a slot for placing sensor/actuator daughterboards. The footprint
for the sensor/actuator daughterboards is compatible with mikroBUS standard. However,
there are two additional signals to the footprint: 24V and AN2 (second analog input channel).
The dimensions and the pinout of the sensor/actuator daughterboard slot on the development
board is shown below:

periCORE Development Kit User Guide, rev: 4 Page 11

Doc.-

No.:PRN.100.378

©peri May 3, 2022

[BN pwMi|
B crio1 crio2 I
[JXeH UART_RX | |}
Hn~c UART_TX |
W M2 i2c_scL Il
[JINXe 12¢c_spA| Il
B s3v svi
B cnD oND R

L L]

24V AN2

Figure 8: Sensor/actuator daughterboard pinout.

2.4 Debug interface

The periCORE development board allows debugging via JTAG interface. The JTAG debugger can
be connected with the development board via the header connector J10 (see again Figure 5
number 7). The pinout of J10 is compatible with ARM JTAG 20. Jumpers J2 and J3 should be
placed in order to have proper JTAG operation.

2.5 UART interface

The UART interface (J16, see again also Figure 5 number 5) of the periCORE module can be
accessed by e.g. using the provided FTDI TTL232R-3V3 device connecting it via USB to the
periMICA device. For more information also refer to section 3.5.

periCORE Development Kit User Guide, rev: 4 Page 12
Doc.-No.:PRN.100.378

https://ftdichip.com/products/ttl-232r-3v3/

©peri

May 3, 2022
3 System Architecture
3.1 Overview
periMICA Host PC
=" oot penCORE Dok

Application’ Container

Debug Container

periCORE UART VP Client/3oftware
\ TP port2300 —— | | (eg. télnet)
1 Il
SPI 1USB J-EEG
Dev-Board
periCORE Ethernet =D penSTART

Figure 9: System architecture of periCORE development kit setup.

The basic components for developing customized periCORE applications require a PC, a peri-

MICA as debugging interface and the development board itself with the periCORE device as
heart of it (Figure 9).

As building and debugging environment serves Visual Studio Code © with the Remote Container
Extension accessing a docker container that is provided by Perinet (Figure 10).

Workspace contains a Dev Container configuration File.
Reopen workspace to develop in a container (i

Source: Remote - Containe... | Don't Show Again... Reopen in Container

Figure 10: Using Remote Containers Extension in Visual Studio Code ©.

The docker container includes the required C++ toolchain, libraries and headers. No additional
software is necessary on the Host PC except for docker and Visual Studio Code ©.

periCORE Development Kit User Guide, rev: 4 Page 13
Doc.-No.:PRN.100.378

https://code.visualstudio.com/
https://www.docker.com
https://www.docker.com
https://www.docker.com
https://code.visualstudio.com/

©peri May 3, 2022

The default application workspace repository is also provided by Perinet and serves as the
entering point to Visual Studio Code ©. Running it for the first time, the docker container will
be automatically downloaded and the first build can be triggered, directly.

The firmware application is installed and debugged via a periMICA device that has a JLink de-
bug device attached via USB. A pericoredbg Container installed on this very periMICA uses this
interface and translates it to a TCP connection on port 5333. In the same way the pericoredbg
Container accesses the UART interface of the periCORE device providing it via TCP port 2300.
The translation of the SPI communication to the periMICA USB interface can thereby be done
by a e.g. FTDI TTL232R-3V3 device.

Last but not least a periSTART device allows network communication for the periCORE devel-
opment board for testing and debugging the HTTP REST APl or MQTT Client functionality of
the installed firmware.

3.2 Host PC setup

Install and prepare Visual Studio Code ©, docker and the application repository by following
the guide lines from periCORE Development Kit Setup Application Note [6].

3.2.1 Update

Software dependencies like the docker container or the application repository might be up-
dated from time to time. To update your periCORE Development Kit sources, it is necessary to
update the application repository:

cd <application-repository-basepath>/pericore.application.distance
git pull

Listing 1: Update application repository. If the docker container has also changed it will indi-
rectly be updated as well when using the container in Visual Studio Code ©.

This will make sure that you have the latest sources, libraries and toolchain installed.

3.3 periCORE network interface

Like mentioned above the periCORE device of the development board needs to have a network
translation unit from SPE in order to communicate via Ethernet.

Therefore a periSTART device is used. After connecting the development board to the periS-
TART and attaching it to a network switch it should be available via network. The name printed
on the label (Figure 11) can be used to validate network functionality is working correctly.

periCORE Development Kit User Guide, rev: 4 Page 14
Doc.-No.:PRN.100.378

https://code.visualstudio.com/
https://www.docker.com
https://www.jlink.de/
https://ftdichip.com/products/ttl-232r-3v3/
https://code.visualstudio.com/
https://www.docker.com
https://www.docker.com
https://code.visualstudio.com/

©peri May 3, 2022

Figure 11: periSTART device with label information.

For example using mDNS in the browser type https://<peristart-name>.local. However,
refer to section 5 in case problems occur.

3.4 Debug interface

After installing the pericoredbg Container to the provided periMICA [6] no further configuration
for the container is necessary. If accessing the periMICA is not working via browser due to
network configuration issues again refer to section 5.

A JLink device connects the development board to the periMICA via USB. The pericoredbg
Container is running an JLinkGDBServerCLExe instance triggered by a socat process providing
a TCP connection via port 5333.

Just like for all Perinet Smart Compoments mDNS names can be used to access the periMICA
containers via network. Hence Visual Studio Code © debug settings need to be configured
with the mDNS name of the pericoredbg Container. The settings. json can be found in the
application workspace repository under .vscode. Therefore modify the DEBUG_TARGET, see
also listing 2.

"DEBUG_TARGET":"pericoredbg-periMICA-serno.local:5333", // hostname of ...

Listing 2: Change debug target to pericoredbg Container mDNS name in settings. json.

Also in the same directory the launch. json needs to be adapted. Within the JSON the first
object of the inputs array needs to be adapted, in detail the default value needs to be set
just like for the DEBUG_TARGET (listing 3):

periCORE Development Kit User Guide, rev: 4 Page 15
Doc.-No.:PRN.100.378

https://<peristart-name>.local
https://www.jlink.de/
http://www.dest-unreach.org/socat/
https://code.visualstudio.com/

©peri May 3, 2022

"inputs": [

{
"id": "remote_debug",
"description": "Enter remote debugcontainer uri",
"default": "pericoredbg-periMICA-serno.local:5333",
"type": "promptString",

+

]

Listing 3: Change default value to pericoredbg Container mDNS name in launch. json (Ex-
cerpt is shown).

The TCP port 5333 is pre configured. If there is any need to adapt the TCP port or some other
J-Link configuration is wanted this can be done by using SSH into the pericoredbg Container,
via e.g. using Putty (the mDNS name of the container can be used to access it).

For SSH access an One time password is necessary which needs to be generated from the
pericoredbg Container webpage, that again can be accessed via mDNS url or from the periMICA
home page by clicking on the pericoredbg Container icon (Figure 12, also refer to periMICA User
Guide [8] for more information).

<« C @ htips;//debug-mica-menew.local o a

PeriCORE debug

©peri

Seamless IoT Connectivity

Description

The periCORE debug container is provided as a debug server for the periCORE development board.
The following debug ports can be accessed via TCP:

Port 4333: OpenOCD debug interface to periCORE development board
Port 5333: J-Link GDB Server for periCORE development board
Port 2300: UART interface to periCORE device (/dev/ttyUSBO0)

Application name and SSH access

Application name: application_name f"

SSH one time password: Generate OTP for root Generate

Figure 12: Excerpt from pericoredbg Container Web Ul, using mDNS in the browser. Gener-
ate SSH One time password for user root access by clicking on the Generate button.

Note: If the access to any pericoredbg Container services via TCP, SSH or HTTP fails please
refer to section 5.

3.5 UART interface

Just like it is done for the debugging interface access to UART of the periCORE can be used
for debugging via pericoredbg Container TCP port 2300. Again Putty could be used to access

periCORE Development Kit User Guide, rev: 4 Page 16
Doc.-No.:PRN.100.378

https://www.putty.org
https://www.putty.org

©peri May 3, 2022

this interface. On Linux based OS telnet might be a more common tool, however.

After opening the TCP connection UART messages should appear on the command terminal
provided the UART outport is configured correctly within the Application Firmware. (Refer to
periCORE Firmware Development Application Note [7] for more information on this)

periCORE Development Kit User Guide, rev: 4 Page 17
Doc.-No.:PRN.100.378

©peri May 3, 2022

4 Software Development

4.1 periCORE Software API structure

periCORE Firmware Components

WebUI

libperiCORE

Application

seve

Figure 13: Firmware Architecture of periCORE based applications. Green boxes indicate
components that are common for all applications. On the other hand, grey boxes define ap-
plication specific components.

The basic idea of the periCORE development kit from software perspective is to customize ap-
plications on top of the Operating system (séve) and the so called libperiCORE. The application
part is implemented by mainly extending the functionality given through libperiCORE in detail
by creating additional endpoints for both MQTT Client and HTTP Server.

The Web Ul can also be customized on top of a minimized Javascript Framework implemented.

4.2 seve OS

Section 4.3 requires basic knowledge of seve regarding how data is represented by the Buffer
datatype (seve: :1ib: :memory: :Buffer) and also how outports and inports function between
different components, namely focus on:

e seve::eventflow::SingleValue
e seve::eventflow: :Queue
e seve::eventflow::Sink

Therefore refer to séve Operating System Datasheet [9].

periCORE Development Kit User Guide, rev: 4 Page 18
Doc.-No.:PRN.100.378

©peri May 3, 2022
4.3 Extend libperiCORE Network Services

periCORE Network Components
HTTPs Server MQTT Client
(Main +’'Sensor
Configuration)
mDNS / / 7
DNS-SD LLMNR libperiCORE MQTT Subscriber
Publishing R Al Endpoints
Endpoints (Sensor settings)
Application MQTT Publisher
REST Endpoints
Endpoints (Sensor data)

Figure 14: Network Architecture of a periCORE based firmware application. Green and
green-dashed boxes indicate components that are provided by libperiCORE, hence are com-
mon for all applications. On the other hand grey boxes define application specific compo-
nents, like Endpoints used for both HTTP Server and MQTT Client.

The idea of Perinet Smart Components is to provide sensor data and sensor interaction to
the outside world. From hardware perspective all Perinet Smart Components (like periSTART,
periSWITCH and periNODE devices) are based on a periCORE module. A similar approach was
followed for the software implemented. This is represented by the libperiCORE which provides
a basic set of components, which some of can be extended.

Due to a less configuration approach only IPvé link local addresses are being used for network
communication through all periCORE based devices which has some implications on the usage,
however most distributions and browsers support IPvé link local addresses. In case you are
encountering problems anyways, refer to section 5.

The following network components provided by libperiCORE are used by periCORE based ap-
plications:

e HTTP Server: main interface with REST-like API for the user to configure a Perinet Smart
Components device or perform firmware updates. The HTTP interface can also be ac-
cessed by a provided Web Ul which is mainly general for most applications, but allows
customization as well (See section 4.4).

periCORE Development Kit User Guide, rev: 4 Page 19
Doc.-No.:PRN.100.378

©peri May 3, 2022

The HTTP Server backend can be modified by adding new HTTP Endpoints performing
specific actions.

Since security becomes more and more important in networking, the HTTP Server pro-
vides settings to use mTLS and trusted certificates, which restricts access to the HTTP
Server only to users with valid client certificates. Also see periCORE Datasheet [5] for
more information.

e mMDNS/LLMNR Publishing: Since IPv6 addresses can be very cryptical, LLMNR and mDNS
hostname publishing are being used to allow access of Perinet Smart Components by a
unique device name, without the need of having to type IP addresses.

e DNS-SD: DNS Service discovery is used to browse for services of a specific type. On one
hand periCORE based applications use it to announce meta data about its given services
(like port, url and application information). On the other hand periNODE devices make
use of it to discover the hostnames of MQTT Brokers in the network that can be used
to configure the broker of the libperiCORE MQTT client.

e MQTT Client: Abasic MQTT Client implementation is given by libperiCORE, also support-
ing TLS / mTLS features similar to the HTTP Server. Functionality can be implemented
by creating MQTT Client Endpoints for both publishing sensor data or subscribing to
events using this to trigger certain processes. See section 4.3.2 for more information.

4.3.1 Create new REST API endpoints

New REST API endpoints can be added to the libperiCORE HTTP Server by defining Endpoint
(given under 1ibperiCORE/src/periCORE/network/http/Endpoint . h) objects within your cus-
tomized application. Upon construction of a new Endpoint object it registers itself on the HTTP
Server (Listing 4).

Endpoint: :Endpoint ()

: seve::1lib::Chainable()

, in_request(this, &Endpoint::handle_request)
, patch_out{nullptr}

, put_out{nullptr}

{
periCORE: : implementation: :network: :HttpServer& http_server =
— periCORE: :implementation: :network: :HttpServer::get_object();
periCORE: : implementation: :network: :HttpServer*volatile test =
— &http_server;
http_server.add_endpoint(this);

Iy

Listing 4: Endpoint constructor definition.

It provides callbacks for all HTTP methods like GET, PATCH, PUT, POST and DELETE being
called automatically by the HTTP Server, when the according method and URI / route is being

periCORE Development Kit User Guide, rev: 4 Page 20
Doc.-No.:PRN.100.378

©peri May 3, 2022

requested (listing 5). That is why the Endpoint object also needs to have a unique URI to be
identified which must be set by the set_route method.

protected:
virtual void get(Request* r){return_status(ResponseStatus::NOT_FOUND);};
virtual void patch(Request* r){perform patch post(r, patch_out);};
virtual void post(Requestx*
— r){return_status(ResponseStatus::NOT_IMPLEMENTED);};
virtual void put(Request* r){perform patch_post(r, put_out);};
virtual void del(Request*
— r){return_status(ResponseStatus: :NOT_IMPLEMENTED);};

Listing 5: Endpoint class method declarations of HTTP callback functions.

For PATCH and PUT methods default implementations are given already. Both callbacks proxy
the HTTP request payload as a Buffer to an external component. Thus in these cases according
outports from the Endpoint to the receiving components need to be set (listing 6).

seve::eventflow: :Sink<seve::1lib::memory: :Buffer*>* patch_out;
seve::eventflow: :Sink<seve::1lib: :memory: :Buffer*>* put_out;

Listing 6: Endpoint outport declarations for PATCH and PUT methods.

However, all HTTP method callbacks are virtual and can be overridden by deriving a new class
from the base class Endpoint. The HTTPEndpoint defined in 1ibperiCORE/src/periCORE/net-
work/http/HTTPEndpoint.h is an example of such a derived class (listing 7).

class HTTPEndpoint : public periCORE: :network: :http::Endpoint

{

public:
seve::eventflow: :Queue<HTTPEndpoint, seve::1lib::memory: :Buffer>
— inPort_buffer{this, &HTTPEndpoint::update};

private:
void get(periCORE: :network: :http::Request* request) override;
void update(seve::1ib: :memory: :Buffer *buffer);
seve::1lib: :memory: :Buffer *cached{nullptr};

};
Listing 7: Declaration of HTTPEndpoint class derived from Endpoint.
It basically caches the latest Buffer (which is mostly a JSON message) provided from an external

component, and sends it as response to the HTTP client when receiving a HTTP GET request
under the corresponding URI (See also figure 15).

periCORE Development Kit User Guide, rev: 4 Page 21
Doc.-No.:PRN.100.378

©peri May 3, 2022

libperiCORE HTTP Server
———HTTP GET to /my-get———| 7
HT'I/'rZI;.ngdep;omt k=—=Update message External Component A
) <——=Return 200 with message
HTTP Client

——HTTP PATCH to /my-patch—>

Endpoint -

Imy-patch Forward payload——={ External Component B
< Return 204

Figure 15: Example application HTTP Server with two endpoints, one for either HTTP GET
and PATCH request handling.

As data representation basically JSON is used for HTTP request and response communication.

In case mTLS is active in the application the handle request method of the Endpoint class
determines which user role is needed for the according URI and HTTP method combination.
Currently the following user roles are implemented by default (listing 8):

e PATCH / PUT requests: basically requires ADMIN role, only for URI that start with /config
or /sample require SUPER rights.

e GET / DELETE / POST requests: default user role is set to READER which is intended for
GET requests but only also given for DELETE and POST since these HTTP methods have
not been used / implemented, yet.

if (!request->method. compare ("PATCH"))

{
if (route.compare("/sample") == 0 ||
route.compare("/sample/gpiol") == 0 ||
route.compare("/sample/gpio2") == 0 ||
route.compare("/config") == 0 ||
route.compare("/config/reset") == 0)
{
required_role = periCORE: :security: :UserRole: :SUPER;
+
ellse
{
required_role = periCORE: :security: :UserRole: :ADMIN;
+
Iy
else if (!request->method.compare ("PUT"))
{
required_role = periCORE: :security: :UserRole: :ADMIN;
}
Listing 8: Excerpt from handle_request method of Endpoint class.
periCORE Development Kit User Guide, rev: 4 Page 22

Doc.-No.:PRN.100.378

©peri May 3, 2022

Thereby the three different user role types for periCORE based applications are defined as
following:

e READER: as the name suggests intended to allow users to only read specific settings or
information.

e SUPER: also allowed to change sensor configuration and sensor settings.

o ADMIN: has full access, allowed to perform firmware updates and make main configura-
tions, like security settings.

Also see periCORE Firmware Development Application Note [7] for a complete example on
how to use customized HTTP endpoints within your application.

4.3.2 Create new MQTT Client endpoints

Similar to the libperiCORE HTTP Server the libperiCORE MQTT Client handles MQTT endpoints
by either publishing a message when a MQTTPublisherEndpoint triggers its outport (e.g. by
a timing event) or forwards a received MQTT message to the MQTTSubscriberEndpoint that
obeys an according MQTT topic.

Both MQTT endpoint classes need to be defined by a MQTT topic upon construction of a new
object (listing 9).

class MQTTEndpoint: public seve::1lib::Chainable
{
public:
MQTTEndpoint (const MQTTTopic&& topic);
const std::string view get_topic(){return mqtt_topic.get();}
protected:
const MQTTTopic mqtt_topic;
};

Listing 9: MQTTEndpoint class declaration serving as base class for both MQTTPublisherEnd-
point and MQTTSubscriberEndpoint classes.

Also on construction of an MQTTSubscriberEndpoint object it automatically registers itself on
the libperiCORE MQTT Client (listing 10):

MQTTSubscriberEndpoint: :MQTTSubscriberEndpoint (const MQTTTopic&& topic)
: MQTTEndpoint{std: :move(topic)}

{
periCORE: : implementation: :network: :MQTTClient& mqtt_client =
— periCORE: :implementation: :network: :MQTTClient: :getInstance();
mqtt_client.register_subscriber_endpoint (*this);
Iy
Listing 10: MQTTSubscriberEndpoint constructor definition.
periCORE Development Kit User Guide, rev: 4 Page 23

Doc.-No.:PRN.100.378

©peri

May 3, 2022

The MQTTPublisherEndpoint is not directly added to the libperiCORE MQTT Client, instead the
outport of the endpoint is connected with the publish inport of the libperiCORE MQTT Client
(listing 10). So the endpoint has indirect control triggering the publishing when a new message
from the connected external component was received (See figure 16).

using namespace periCORE::implementation: :network;

MQTTPublisherEndpoint: :MQTTPublisherEndpoint (const MQTTTopic&& topic)
: MQTTEndpoint{std: :move(topic)}
, outport_mqtt{*MQTTClient: :getInstance().get_inport_publish()}

{
}

Listing 11: MQTTPublisherEndpoint constructor definition.

;s Publish message

libperiCORE MQTT Client

Topic A
MQTT Broker

Receive subscriber
message Topic B

MQTTPublishEndpoint
Topic’A

MQTTSubscriberEndpoint
Topic B

—=Update message—

External Component A

Forward message—

External Component B

Figure 16: Example application MQTT Client with one MQTTPublisherEndpoint and one

MQTTSubscriberEndpoint.

e MQTTPublisherEndpoint (1ibperiCORE/src/network/MQTTPublisherEndpoint.h):

Similar to the HTTPEndpoint the MQTTPublisherEndpoint class expects a Buffer handler
from an external component publishing this latest update upon reception. But in con-
trast to the HTTPEndpoint the Buffer is not cached in the endpoint, instead it is published
directly. The connection of the MQTTPublisherEndpoint inport to the external compo-

nent is done by assigning the get_inport method.

e MQTTSubscriberEndpoint (LibperiCORE/src/network/MQTTSubscriberEndpoint.h):

Basically serves as a proxy to transfer a Buffer to an external component upon reception
of a MQTT message with the according topic. The connection to the receiving compo-
nent is done by calling the set_outport method of the MQTTSubscriberEndpoint right

after construction.

Just like for the HTTP Server JSON is used as data representation format for MQTT data

communication.

Also see periCORE Firmware Development Application Note [7] for a complete example on
how to use customized MQTT Client endpoints within your application.

periCORE Development Kit User Guide, rev: 4

Doc.-No.:PRN.100.378

Page 24

©peri May 3, 2022
4.4 Web User Interface

4.4.1 Sources and image creation

Frontend source files of periCORE applications are compiled into a separate Web Ul binary
which is bundled together with the application firmware to a firmware update image. The Web
Ul can not be installed or updated using the debugging tools, instead the Firmware update
function via Web Ul or REST API call of the periCORE device needs to be used.

The sources of the Web Ul binary are basically comprised of js and html files. Most of the
functionality is done by using Javascript to have a Web application like feeling meaning for
example that only specific page content is loaded when navigating in between different Web
Ul tabs. The header, footer and also basic css and js are loaded only once, just the actual
content in between is reloaded on demand. Another benefit of this is that it keeps the request
load low on the periCORE device, that has a limited performance especially when it comes to
HTTP using TLS features.

Also due to performance issues the Web Ul Makefile decodes css and png file links into Base64
representative strings of the according files replacing them in the according Javascript and
html files. It is recommended to use png files as picture file format, since only a total Web Ul
binary image size of 256KB is allowed to build.

Again see periCORE Firmware Development Application Note [7] for an in depth example on
how to develop customized Web applications for periCORE devices.

4.4.2 TLS session resumption

Another way of increasing Web Ul performance is to make use of TLS session resumption.
A usual HTTP call to a periCORE based device with TLS enabled takes about 700 ms. Having
mTLS enabled it takes even longer with about 1300 ms for each request. However when using
TLS session resumption the TLS handshake will be only performed on the first request, after
that this initial TLS session is used for following requests by both client and server. Which
means that these requests then only need 100ms to 200ms each regardless of using mTLS or
not.

The periCORE HTTP Server backend supports TLS session resuming, however from client side
some browsers have it disabled. Newer Firefox versions seem to not use it (anymore), while
Microsoft Edge and Google Chrome are supporting it as of yet.

4.4.3 Html Dynamic Content Modification

Like mentioned above the content of the Web Ul can be divided into header, content and
footer. The header and footer thereby remain constant, only the content in the center is
dynamically changed (See figure 17).

periCORE Development Kit User Guide, rev: 4 Page 25
Doc.-No.:PRN.100.378

©peri May 3, 2022

.
Operl 1! Home Information Configuration Security Firmware update API documentation Online documentation
\\\ }
Distance
(LIIIH]III’IIHIIIII’\HHHH‘HH\HH‘HHHH\J)IHH\HILH\HHH‘HHH\HL\\HHH\LHHHH\(LH\HHHLHH\HH‘\\HHH\L\HHHH!HHHHL
20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
42 mm
Perinet GmbH welcome@perinet.io
Rudower Chaussee 29 www.perinet.io
12489 Berlin +49 30 86 32 06 700

Figure 17: Web Ul structure of periCORE based applications. Red boxes indicate static con-
tent (header and footer), whereas the actual content (green box) is dynamically modified
when navigating to other web pages using the header tabs.

In order to allow content being loaded automatically means, no html files need to be modified,
instead html DOM elements are created by Javascript functions. For example when looking at
the content function to create the DOM elements for the Firwmare Update web page (Listing
12 taken from application repository path webui/fs_periNODE_distance/js/update.js)

periCORE Development Kit User Guide, rev: 4 Page 26
Doc.-No.:PRN.100.378

©peri May 3, 2022

function dom_update() {
return ‘<div id="overlay"></div><div>
<figure>
<div class="update-container">
<img src="images/update-plain.png" alt="periNODE"
— id="update-plain">

</div>
</figure>

<h1l id="update-header">Firmware update</h1>
</div>
<div>
<div><input type="file" name="fileUpload" id="fileUpload"></div>
<div><input style="margin-left:2px" type="submit" id="uploadbutton"
— alt="Update Firmware" value="Upload file"></div>
<div id="upload_label" for="upload_status">

<div class="loader">

<div class="check">

<!--
 -->
</div>
</div>
</div>
</div>°¢;

Listing 12: html content created for Firmware Update Web page using Javascript.

The DOM elements in the code can directly be accessed from within Javascript. Looking at
the example case defining the dom_update function is not enough. It needs to be registered
in the framework (Listing 13 taken from webui/fs_periNODE_distance/js/update. js).

function reload_update() {
$("content_id") .innerHTML = dom_update();
document.title = "periNODE Web Server | Firmware update";
$(’uploadbutton’) .addEventListener(’click’, onSelectFile, false);

}
update_content ("update", reload update);

Listing 13: Registering DOM content creation in Javascript Framework.

Therefore the update_content function needs to be called by passing a callback function
(reload_update in this case) which in turn will be called when the user enters the according

periCORE Development Kit User Guide, rev: 4 Page 27
Doc.-No.:PRN.100.378

©peri May 3, 2022

web page. The first parameter of the update_content is an identifier for the corresponding
web page, which is used by the framework (peri_base. js) to identify the callback (See also
calls of reload functions from listing 14).

4.4.4 Html Static Content Modification

If changes to header and footer need to be made this can be done by modifying the according
dom_footer / dom_header functions in the webui/fs_periNODE_distance/js/peri_base.js
file from the application repository folder. (See example for the header function in listing 14)

function dom_header (){
return ‘<header class="header">

<input class="menu-btn" type="checkbox" id="menu-btn" />
<label class="menu-icon" for="menu-btn'"><span
< class="nav-icon"></label>
<ul class="menu">
<a href="home.html" onclick="return
— reload(’home’) ">Home</1i>
<a href="info.html" onclick="return
— reload(’info’)">Information</1i>
<a href="config.html" onclick="return
— reload(’config’)">Configuration</1i>
<a href="security.html" onclick="return
— reload(’security’)">Security</1li>
<a href="update.html" onclick="return
— reload(’update’)">Firmware update</1i>
API
— documentation</1i>
<1i>0Online
— documentation</1i>

</header>°‘;

Listing 14: Javascript function to change header DOM content.

4.4.5 Create new Web page

In order to add a new page to the Web Ul follow these steps:

e Copy the home.html from webui/fs_periNODE_distance folder into the same destina-
tion and name it accordingly, e.g. custom.html.

e Inthewebui/fs_periNODE_distance/js/peri_base. js file adapt the dom_header func-
tion by adding a new navigation link (example listing 15) to the desired position.

periCORE Development Kit User Guide, rev: 4 Page 28
Doc.-No.:PRN.100.378

©peri May 3, 2022

Mytab</1i>

Listing 15: Navigation link for new custom web page within peri_base.js file.

e Now create anew js file under webui/fs_periNODE_distance/js_node, e.g. named cus-
tom. js. Here the callback needs to be defined when the user enters the new web page
(simple example in listing 16).

function reload custom() {
$("content_id") .innerHTML = "My custom content";
document.title = "periNODE Web Server | Custom";

H

update_content("custom", reload custom);

Listing 16: Example Javascript file for new page.

The update_content needs to be called once for the case that the js file is loaded initially
for the first time.

e now thereload_customcallback needsto be registered, hence added inthe peri_base. js
file like following:

function load custom() {
if (!1load_js_script("js_node/custom.js")) {
update_content("custom", reload_custom) ;

}

Listing 17: Register callback function for new web page in peri_base.js file.

It is important to name the function like 1oad _<uri>. The URI needs to be the same as the
value passed to the reload function for the navigation link (see again listing 15). The up-
date_content function expects as first parameter the URI and as second parameter the call-
back defined in the according js file, just like it is called in the js file.

Note: You might be wondering why the update_content function is only loaded in case the
javascript file was already loaded. This is due to the fact, that the javascript file with the actual
reload callback is loaded asynchronously. So in the example of the 1oad custom function
which is calling the load_js_script function it is not guaranteed when the latter function
returns, that the javascript file was loaded already. Therefore the loaded javascript file itself
is calling the update_content function for one time.

periCORE Development Kit User Guide, rev: 4 Page 29
Doc.-No.:PRN.100.378

©peri May 3, 2022

4.4.6 Loading css files

Additional Stylesheet files can also be added by calling the according Javascript function
load_css_script (Seelisting 18 taken from webui/fs_periNODE_distance/js_node/home. js).

load_css_script("css_node/ruler.css");

Listing 18: Example call for loading css file.

Note: When modification or replacement of Perinet default style sheets is necessary, modify
the set_style function within webui/fs_periNODE_distance/js/peri_base. js by loading
your customized style sheets instead.

It is important to understand, that the Web Ul Makefile is replacing the css links given in all
js and html by its Base6é4 string representation (compare listings 18 and 19). This means that
css files do not require a separate HTTP request, which keeps the load low on the periCORE
application HTTP server.

load_css_script("data:text/css;base64,LnJ1bGVyIHsgbWFyZ21u0iBhdXRvOyB...");

Listing 19: Example call for loading css file after building. Out of convenience reasons the
Baseb4 string is not shown entirely.

Note: The Makefile also does not add these css files to the Web Ul binary, hence they are not
available via separate HTTP request, as well. This is intended to keep the Web Ul binary size
low, which allows only a total size of 256 KB.

4.4.7 Loading image files

Just like for css files, png image file links are being replaced by the Web Ul Makefile in all js
and html by its Baseé4 string representation in order to keep the load low on the periCORE
application HTTP server.

Note: Also similar to css files the Makefile does not add the actual image files to the Web Ul
binary. When other file formats like jpeg need to be supported, we recommend to use the
Baseb64 string representation as well. Therefore changes to the Web Ul Makefile would be
necessary.

periCORE Development Kit User Guide, rev: 4 Page 30
Doc.-No.:PRN.100.378

©peri May 3, 2022

4.4.8 Debugging Web Ul changes

In order to test a new implemented Web Ul you need to create the firmware update image
and update the periCORE from the development board via REST API or Web Ul. Using the
debugger via pericoredbg Container can not be done since the Web Ul files are not reloaded

into the flash memory. See also periCORE Firmware Development Application Note [7] for
more information.

Note: The IPvé link local address and hostname for the periCORE application services can be
set within the application repository path under src/defaultNodeInfo.cc. The IPvé6 address
can be derived from the mac address indirectly by £e80: : <mac-address-formatted>:0.

periCORE Development Kit User Guide, rev: 4 Page 31
Doc.-No.:PRN.100.378

©peri May 3, 2022
5 Troubleshooting

| can not reach the webpage of the periMICA device.

Make sure that your OS is supporting mDNS resolution and IPvé link local addresses. Though
the periMICA device supports IPv4 as well the periMICA containers and Perinet Smart Compo-
nents can only be accessed using IPvé6 link local. Check that in a command terminal (Under
Windows press the Windows button and enter cmd) ping is working correctly (listing 20).

ping -6 <peri-device-name>.local

Listing 20: Ping command to Perinet device.

If using versions below Windows 10 you might need to install some mDNS client software, like
Bonjour.

| can not access IPvé6 link local addresses with certain browsers

This should mainly affect you if your host OS is Debian / Ubuntu based. Since most browsers
struggle with using IPvé Link local address zone identifiers under those Operating Systems.
Firefox might be an exception here but it is not recommended since the Firmware Update
from Firefox is not working for Perinet Smart Components. There are basically two options:

e (Recommended) using the periMICA as proxy device via Remote Devices feature by for-
warding HTTP requests to periMICA containers and Perinet Smart Components. See peri-
MICA User Guide [8] for more information on this.

e using socat to proxy TCP connections from IPvé link local to the IPv4 address of your
local host for HTTP services (listing 21)

socat TCP4-LISTEN:<some-custom-port>,fork,reuseaddr
< TCP6: [<peri-device-11v6>Y,<localhost-nic>] :443%

Listing 21: General command to proxy HTTP connections.

You can get the IPvé link local address of your periMICA container or Perinet Smart Com-
ponents device by using avahi or a simple ping command to the mDNS name of the
device (listing 20). For example if you wanted to forward HTTP connections from a peri-
CORE with the mDNS name periCORE-n8ipe that has the IPvé address £e80: : 742e : dbcf
and your localhost network interface was eth0 the socat process would be like in listing
22.

socat TCP4-LISTEN:8100,fork,reuseaddr TCP6: [fe80: :742e:dbcf:21a4:0%eth0] :443&

Listing 22: Proxy command example.

periCORE Development Kit User Guide, rev: 4 Page 32
Doc.-No.:PRN.100.378

:21a4:0

https://support.apple.com/kb/DL999?viewlocale=en_US&locale=de_DE
https://www.debian.org/
https://ubuntu.com/download
https://www.mozilla.org/de/firefox/new/
https://www.mozilla.org/de/firefox/new/
http://www.dest-unreach.org/socat/
https://www.avahi.org/
http://www.dest-unreach.org/socat/

©peri May 3, 2022

Now in the browser simply type https://localhost:8100/ and you should be able to
see the Web Ul of your periCORE device.

periCORE Development Kit User Guide, rev: 4 Page 33
Doc.-No.:PRN.100.378

https://localhost:8100/

©peri May 3, 2022
6 Labeling and Ordering

Labeling

Unlike the periCORE module, the periDEVboard 3.3 comes without any labeling on itself. For
interpretation of the label of periCORE module, please refer to the periCORE datasheet.

Ordering

For ordering periDEVboard 3.3 please contact
sales@perinet.io.

periCORE Development Kit User Guide, rev: 4 Page 34
Doc.-No.:PRN.100.378

mailto:sales@perinet.io

©peri May 3, 2022
7 Contact & Support

For customer support, please call us at +49 30 863 206 701 or send an e-mail to
support@perinet.io.

For complete contact information visit us at www.perinet.io

periCORE Development Kit User Guide, rev: 4 Page 35
Doc.-No.:PRN.100.378

mailto:support@perinet.io
www.perinet.io

©peri

May 3, 2022

A Development Board

#.0
16.7.2021 - Added RC circuit for debouncing the On-Off switch
15.7.2021 - Changed block diagram
16.7.2021 - J1 changed for har-flexicon and moved to the edge of the board.
17.7.2021 - 100BASE-TX polarity corrected.
From 4.0 to 4.1
15.12.2021 - Changed periCORES to periCORE4 which caused:
- Removing analog inputs from the sensor side
- Removing PWM outputs from the sensor side
- Added SMI signals to the RMII header

- Added jumper J2 for keeping ST coprocessor in reset
18.12.2021 - Added 33R series resistors for limiting the current on SP!I lines
18.12.2021 - Added BCM nRESET to the JTAG connector
18.12.2021 - Added series capacitors to the SGMII signals
11.01.2022 - Added ESD protection for SGMII signals

From4.1t0 4.2
- Updated periCORE pinout
- Updated DEBUG_EN and nRST circuitry.
- Improved silkscreen

- Added BCM nRESET circuit. The push button is not any more used for on-off but for reseting BCM.

Tile periCORE Development Board Perinet GmbH. 2

Rudower Chaussee 29 { ‘/‘ L]
S A4 Revison: 42 ‘ Part: Changes 12489 Berlin rl
Date: 24102022 e on Germany

Filo

Tme: 19:1606

3

periCORE Development Kit User Guide, rev: 4
Doc.-No.:PRN.100.378

Page 36

€ % I
00QUIS MAIAIBAQ\G\10USBUS \Se5Ea oy \d WAL | [800]\ ejeddy \ONES BIUE WeN\SIa5M 0 £
6 J0 g 1e8us 90:'9k6) oW 2202/e0/be eleq
Auewien
-hmn _» uieg 68v2H MONIBAQ iMEed Ty uosmey vy 78 U 080T 1vuLRg 030
~ (@) 62 G8sSNEU) JaMOPNY
i HAwo 1outisd pieog awdojensg 34ooied oL uad; wad ;.

ujJamogd

O Jamod

1INY

1N0"EAE
3015 pEOGIRIyENeQ 10SUAS

m_N_OUCwQ ¥ H0d X1-35eg001/3dS

T Hod

O Jamod

T30od 3dS
030od 3dS

NI"AvT

S
2 o noYercy
1d 43A0 J9MOg
sQa 05U d 4970 J9MOg
OAS (} woa
8ngaqg SISpeaH 1aMod 19Mod
¢ (4 I

14 € 4 3

20Q405 A1ddNg JaM0d\G\10USdBUS \saseajag \dWa \[B00]\e1eqddy \Ones BIUE WaN\sIas v £
6 J0 g 188S 90:9k6) ewlL 2202/€0/v2 9jeq
Auewien =
—hmn B uleg 6821 fiddng Jemog :vieg v :uosmey py ezs N
H (®) 62 sassnewg Jamopny
A
HAwo 1outisd pieog wswdojansg 34ooiied oL o
= S 2 vl gl !
= 1 r r r
O X [2] B B B
T T I I
9dL SdL
oer @||@ 6Lr 00€eAe JaAS 00AVZ
sdwe|) adoog
. SJapeaH lomod
X X
= 199} 90d &3
Wiz A
= = Siy| 71y
= — = A
4oL ® o 4200-0410-665VIA 0™~ 4000110665 VIQ 0™
|_| [3%] ano 6d 8d
_- 5 Lnoa NIA
|_| 0'1-06082-4 WOd 00€eAE JaAs
aN9
S 00AS
aNo %_s_ a310dene a31 OdoAs
N9 ——
N
anNe —
aNo
anNo —r - -
aNo 019 == _—
aN9 =
N9 25 - 400004106657 VI0 0™ =
AND 419 - we | o 9a T
aNo ogd| | @
94 >
aN9 —e5 o
N9 g ~| ¢ VO9ZraNs ™4 a =
N9 g1y oo | L = = EMNNT_N 1a Ty
- 0T 0T o
N0 ENE —e—0aeAe g 1150028 —O0
=) QLZSHPOY8HATE
NIFOAAYe g r\f\r\f_m_ lx ‘ BRI ‘ T O
YIMOd ST aa 0002007 +202 41~ U0DIX}-1ey
3g0oued VIN 810900APZ

14 € 4 3

50005 SaEHBIU] HIOMISN G \10USEUS S5583 (o5 \dWaL | 8007\ B1eqd0Y ONeS BlUBWaNSISSNVO a1

6 10 v ous Z0'9K6F oWl 2202/€0/b2 o1eq S ver Ler 92r 6er 82l

fuewsen

—hwn _ uilieg 68v2 L XL-3SVE00} $3dS Med gy uosihey oo ezs
(®) 62 sossneu) Jomopny
L4 A\

HAwo 1outisd pieog wswdojansg 34ooiied oL

L0000 0000
(minimjniwinin]n)n]

)
|
m|
)
m|
)
|
)
)

o o o o o o o o |
(o o o o o o o o
o o o o o o o o

preogueiybneguuo)
= ON
= ON
= ON
daL
N"aL
aNo
NIA
+an
-a3n

41S09¢d

|_|A vd UN

sd L vd
[z

wofr~[o|w|=|o|Ni—Io]

preogueiybneguuo)
= ON
— ON
= ‘ON
dalL
N"aL
ano
NIA

XH/ON vd »
WON T u‘xm = 4150928

.xt.éu_mua M__Wo x ‘
XLAYT I8 ERT v o
0 id 9
- = a3 oN
vaTIg 1 — T Td
+Walg L Mm« = o
VaTIg0d (<
#0718 0d
IANNEHLE
3400ued EI

} Hod

00Ave

o|~|o|wv|<|o|x=Io]

€ pieogieyfneg uuoy
= ‘ON
= ON
= ON
dalL
N"aL
ano
NIA
+a31
-a3n

Y
Iy

Y
Y

41809¢d

|_‘ 0d_UA

€d 0d
¢ 0d

o|~|o|wv|<|o|x=I1o]

00Ave

€

50GU3S 1V |G \10USTBUS §35Ea /00 \d WAL \[690T \Beddy OAeS ElUBWaN SIasNvD a1
Auewien 6 105 1w 209161 oWl 2202/E0/ve ored
-—mn 7= ullieg 68¥2H IINg :Wed [44 :uosiney Py ieze
. ®) 62 esesnaug Jemopny
T CREIUETR paseog juswdojereq 340QHed ainL
3H00ued
%_mx EN oaw
N OIlaw
Ao i |2 CELCNI
1aXL [INd 61 AOXY lINY
T NaxL N — S
oo -
0 [0axd I1INd _
wmﬁl__xm n —n_x.rw___zm
cl 0axL g
v__”__wm.._,_.lnnxu A..m._| u_:oo—_l dnoL 1 a1
il NaxXL 1INy b‘ a0 T 00T
dan i n OQadA HIN alZSIyOM8LNTE
AHd LXd (\(\(\(\v._
OIN

0aene

¢ z
30095 SPIAIUS PUE S|E1aUdIIad \G\10USAEUS (56588 [0g | WAL | [00T\BTEqddy \ONES EIUB WaN SIesNTD oI
X j0 9 188us L09k61 ewll 2202/€0/v2 9jeq
D
_hma N uijieg 68¥2 1 sjesoydusd :led v ‘uomsiney by 078
. Au 62 sessney Jamopny KL %
= Haws joutisy pieog awdojensg 34ooied oL T O T O
[o 2 o
cer 5 (m| 3 O
7 7 I v I
z T B s =
KK T = -
— —— O m|
Tk © 20 ‘i =
208N —7 |K||_N I
L
£Iovzeam 91a
EOCRETI. 7 v Vas oal
oot I_AT_._AT,,A & 2aAVZ
ROTINTE T R A1 v 108 02l A A
€lorzeamM §ia == ==
R =
*T@_ﬂ <O
— — (] ano ano [al
_ iy © o 2aAS (m] \S Ace] aaens
{ - e
oagAe} P VE(E Y55 W] vas 0zl N (|
117 g o
S S m| x1ovn O[]
£10r283IM ¥20 S0 [H0}— = W[c0id® 10ido [B 55
Y (] ON N[} 9
an
LI
v
2 —
108 02l %wmm 08 02l
I vas oo e vas oal
0QgAe
el 20D 3 _N%__M__w
f0ld9 eN
ar == M o]
vas ol IN
Rl * RN —— (X QXL 16vn BN mﬁ_.ﬁ«ﬁ
I .OXL LHvn _IE_._MEY axd Lavn Y
“LNI'TV¥EHdI¥Ed
vn e 3d00ved amn

0deAe

¥ €
30QUOS SAT] SNIBIS MUM\G\10UsdeUS \SasEa oy \d Wa] |[e00T\B1eqddy \0NeS BlUB WaN\S oSN olq
X 6 40 L 18ds L0:9k61 ewll 2202/€0/v2 9jeq
uewson
-hmn P uiieg 6821 sgIsnieisjun iued 44 uosiney W ez8
= ,“ \/ 62 98SSNEBUY Jamopny
i Haws joutisy pieog awdojensg 34ooied oL
Ly
=< HD 2
75 PO ol REEL
b &d < 30 JESETTEY
—< do
- 20
PR
— Yo 8 v
VPOLOHYLON | en
=
00€eAe
<
- HD [}
£d — =
€d m\% © vmmm_m PRRLEN 1
£d 5o 13535031
—< a0
= O10)
Ted S o
= g0 < oV
ey IAM VO 8 v _N
VPOHOHYLON | 2N 0
= L1y
00€eAe 2a¢eAe
~
- HD [}
d — =
A "id w\% © vmm__m PRRLEN 1
= Id = 13535031
- 30
—< a0
—) | —
“_ES_I_I u_coelﬁl “_SSI_I 20d__ G m.m - 2 Y %:m RSN N E]
€0 80 Vh) Fod v v 3 W v1vaa3l e Kpy 10031 0k
3] I
1 VPOLOHVZON | n 0 10
fola = 91y sed
oaeAe odene oaene

N3 OVLrVLYA @31
X100

LNO adT11VIdds

340Qued T

€ [|
20QUOS DVIMG\10UsABUS \sasea]ag \d WA | [8007\ejeqddy \OINES BlUE WaN \S1a8N 0 £
It 6 J0 8 18 L09L61 owil 2202/€0/v2 9jeq
vewson
—hwn =2 uiieg 68421 ovIr MEd Y :uomsnay pY cezs
(®) 62 oessneyn Jomopny
* 3 Haws tautieg paeog juswdojaaag 4o ed oL %&u _Wlm
oam>m_|m|i|m|_ !
[g
= 0QAS €L0v28IM 610
YIOIONTL N wol gisalovir v lhgl e MOL OvIF
—on 2ed oam>m_|m|£|m|__ !
& o LdL A AA. v I oV S|k 7 SWLovIr
[T e 2 2 2dL A [S10
e SSOE €l0/28IM 81a
2o 4 aans} 5 00N N9 —
w
I iy
% 3U00+ | [e
4 020
®
8dL -
w0l IX
ovd -
oTEAe =
o ooedr
= ¥ . (T L
e LS
- M8ELSSE ﬂ__ Sed 2
= O T
w
HA0H 4ny *Bopyorem wouj josal
19pesH-OvIr [oL 1= 9¢eH| 120 uquyur o} Japio ut buibbngep
iy = uaym pageld aq 0} spaau g
57 N HOVo8Q = & -
QN9 04980 —7— 2
o, | N9 R I - IS8 — — __ NIong L ® odene
ano oaL = N3 5na3d N
v € 0aL DvIF —— = 13534
=— OND ML —- 155U T v
ano MOL = MOL OV. S0 = w0l
6 MOL DVIF — oaLovir
ano SWL — 0L DV. 10 (e 6ed
ano aL £ J J) SWL_OVIr TISHIOY 5> € LsdLovir
[[T — 1aLovLr
y] N9 8lsHL = § ISHL OVLr iy 79} SWL BV
=— QaA QA SWL DV, 9) STERe
HOVANALNI OVLL
o wiol[] Wi w0 | ot ENTORIEL| EITT]
€2y zed ted | |oed
L
0QEne
JoR}
o[T [EIE I IRGER
uoiesado
OV L [BWIOU 10} PAPa3U SI S| er
)
oa¢ene bdr
(C)]
sdelBU| DY
4 €

©peri May 3, 2022
B Network Daughterboards

B.1 M8 Hybrid Male Connector Daughterboard

The M8H Male Daughterboard is a network daughterboard which allows using the M8 Hy-
brid Male connector with the periCORE development board (see figures 18 and 19).

Figure 18: M8H Male Daughterboard.

WIRE COLOURS AND PIN ASSIGNMENT

1 BI_DA+ Blue

2 BI_DA- White

3 u Red

4 GND Black ! 3

Figure 19: M8H Male connector drawing and pinout.

1 @/ NC. LED- | @ | 18
2 @ NC LED+ (@ |17
3@ NC VIN | @ | 16
4 @ GND GND | @ | 15
5 @ NC. TDN | @ 14
6 @ NC. TDP | @ 13
7 @ NC NC. | @12
8| @ | NC NC. @11
9 @ NC. NC. @10

Figure 20: M8H Male daughterboard pinout.

periCORE Development Kit User Guide, rev: 4 Page 44
Doc.-No.:PRN.100.378

©peri May 3, 2022

¢ Pin 3 of the M8H Male connector is connected with the pin 16 of the daughterboard
which means that the development board can be supplied with power over this daugh-
terboard.

e There are two LEDs (D2 and D3) for showing various link status indicators. The indica-
tors can be configured in software.

e M8H Male daughterboard is intended to be used on the 100BASE-T1 port which is
configured as slave.

periCORE Development Kit User Guide, rev: 4 Page 45
Doc.-No.:PRN.100.378

w m

ocﬂ;ow.v._mcnhmEm:mﬂ_zIm§/9moewim:mD\EIw_z/«\DI<Om\>MD\umOU:m9:m,mwﬂwm‘_m\sENI/{c\s/U
_ V_mmzm m_.mmm_ _Nom\ho\mm

w_E
,m_mo

.o .mEP

>:m=:mw
:Emmmmvw_
mmwwmm:m;o_msg;z
IQEOS:_:&

sm_>a>otmm o_ :o_m_>mm m~m

Emomhmzmzwom_ms_zws_ sE

v(
%_I
vo mxoo_
mm

u__.ﬁ,vl
mol

mv:
Nm

ﬁ

m_mEI.w_z
v_cm
u_w_cm
n_zo
3

«
m

.x._.
+x._.
m_.

_
m:oo___
6

©peri May 3, 2022

B.2 M8 Hybrid Female Connector Daughterboard

The M8H Female Daughterboard is a network daughterboard which allows using the M8
Hybrid Female connector with the periCORE development board (see figure 21).

TERENEREREE N

Figure 21: M8H Male Daughterboard.

WIRE COLOURS AND PIN ASSIGNMENT

1 Bl_DA+ Blue

2 BI_DA- White

3 U Red

4 GND Black y 5

Figure 22: M8H Female connector drawing and pinout.

1 @ | NC LED- | @ 18
2 @| NC. LED+ | @ | 17
3|@ | vouTt NC. | @16
4|@| GND GND | @ 15
5 @ | NC. TDN @14
6| @ | NC. TDP @ 13
7 @| NC. NC. | @ 12
8 @ | NC. NC. | @ 11
9 @| NC. NC. | @ 10

Figure 23: M8H Female daughterboard pinout.

The pinout of the M8H Female Daughterboard (see figure 23) is:

periCORE Development Kit User Guide, rev: 4 Page 47
Doc.-No.:PRN.100.378

©peri May 3, 2022

e Pin 3 of the M8H Female connector is connected with pin 3 of the daughterboard
which means that the development board can supply power to devices connected
with this daughterboard.

e There are two LEDs (D2 and D3) for showing various link status indicators. The indica-
tors can be configured in software.

e M8H Female daughterboard is intended to be used on the 100BASE-T1 port which is
configured as master.

periCORE Development Kit User Guide, rev: 4 Page 48
Doc.-No.:PRN.100.378

4 2 .
90Qyos’piE0gIRIYBNEQ JHBIN\PIEOgIRIUBNEd JHBIN\Y QHYOE A3 3HOOMad\UBISSq 3IEMPIBH BIOMID o4
L jo L e Y¥8E60 oWl 1202/L0/€2 -o1eq
Auewisn
ulieg 682k Ve oL uosmey W 3
62 09ssnEUD Jamopny
RITEN pieog 1elybneq ajewa4 HEIN o
VE }
JupLgu_L “:mwun mv_omm
0 e}
w
a Wi Wik
dlews) H-
[ews} H-8N = NI_H_ _H_ o
plaIYS (—
plols B
1@ aNo — ;
n
@, « I ! T AN 1
€ ¥ [N 0L
el d oL ° | Y I =
! I | Jugor || 0L =
i 10
> 2r
-~ ;
%<
>
d 0L b W
N 0L g
9 4
L
+031 8 W
431 6 i
-
a_J|=
€a
~
~a
' wISH
v

©peri May 3, 2022

B.3 HARTING T1 Industrial Connector Daughterboard

The T1 Industrial connector from HARTING (figure 24) is a connector with the mating face
according to the IEC 63171-6 standard [3]. It is dedicated for SPE and it is recommended
for industrial applications.

vv\:‘!*"""-

Figure 24: HARTING T1 Daughterboard.

WIRE COLOURS AND PIN ASSIGNMENT

| o | At | Wl ﬁ:&&
1 BI_DA+ Blue % @ +

2 BI_DA- White

.. —

Figure 25: HARTING T1 connector drawing and pinout.

1 @ NC LED- @ 18
2 @ NC LED+ @ 17
3/ @ NC NC. | @ 16
4 @ | GND GND | @ 15
5 @ NC TON @ 14
6 @ NC TDP | @ 13
7 @ NC. NC. @ 12
8 @ NC NC. @ 11
9 @ NC. NC. @ 10

Figure 26: HARTING T1 daughterboard pinout.

periCORE Development Kit User Guide, rev: 4 Page 50
Doc.-No.:PRN.100.378

©peri May 3, 2022

e The design uses a tranformer in order to provide the isolation of 1.5 kV between the
development board (periCORE) and the signals at the connector.

e There are two LEDs (D2 and D3) for showing various link status indicators. The indica-
tors can be configured in software.

periCORE Development Kit User Guide, rev: 4 Page 51
Doc.-No.:PRN.100.378

14 ¢ ; :
20Q95"PIe0g B IUBNEd HY %O [eLISNPUI | 1\pIe0g aiuBned HY %od [elIsnpul |11y GdVO8d A3d 300U \UBISad eIBMPIEHMI0M\:D oI
Lo weels §T10VL Wl 1202/20/€2 -01eq
Auewisn
uiieg 6842k pieogieiybneq :ued oL uosney vy o5
62 sessNEYD Jomopny
Hqwo 1eunad pJeoqieybneq J0j08uu0) [eLISNpU| |1 on
a
H00}
1 -
du L 4u00+ L
qu L 0T T
qui_1 188 Jsjeweled 0T
10 T
a1
| I
” N
m D
(- THS = \ﬁ qoL
008T18TST60 m\\w - 7 ——
9 [l YHN FHW T ! dvalg ~
o] EHn valg ”
— Y _
g HS i B YT |gn T N va 1g 3
€r i ~
e 20 =
==
0 o —
Y ¥ :
vy H H
1a Y ¥ =
€d 2a
Je ko Je <
~
=
m
i
14 ¢ ;

©peri May 3, 2022
B.4 ix Daughterboard

The ix Daughterboard is a network daughterboard which allows using the ix connector from
HARTING with the periCORE Development Board. The iX connector is an industrial Ethernet
connector defined in the IEC 61076-3-124 standard [4] (see figure 27).

Pin No. 10BASE-T Industrial
iy 100BASE-TX 1/10GBASE-T EIA/TIA 568A EIA/TIA 5688 (PROFINET)
1 TX+ Bl DA+ white/green white/orange yellow
2 TX- BI_DA- green orange orange
3 NL GND - -
L NC Bl DL+ blue blue -
5 NC Bl D(- white/blue white/blue -
6 RX+ Bl_DB+ white/orange white/green white
1 RX- BI_DB- orange green blue
8 NC GND - = .
9 NC Bl_DD+ white/brown white/brown
10 N.C Bl DD- brown brown

Figure 28: ix daughterboard pin assignment.
periCORE Development Kit User Guide, rev: 4 Page 53

Doc.-No.:PRN.100.378

©peri

May 3, 2022

e The board uses an A-coded ix connector.

N.C.
N.C.
N.C.
GND
RD_P
RD_N
N.C.
N.C.
N.C.

VWO NG A WN R
000000000

LED-
LED+
N.C.
GND
TD_N
TD_P
N.C.
N.C.
N.C.

18
17
16
15
14
13
12
11
10

Figure 29: ix daughterboard pinout.

e The ix daughterboard uses 100BASE-TX and is intended for PORT4 of the development

board.

e There are two LEDs (D2 and D3) for showing various link status indicators. The indica-
tors can be configured in software.

periCORE Development Kit User Guide, rev: 4

Doc.-No.:PRN.100.378

Page 54

4 € 4 3

90QYoS"PIBOgIeIYBNeG XI\PIeOgIe1uBned XI\v QHVOS A3Q 3H00Hed\UBISad a1eMpIEH MI0MD £T]
BTN JEETS) Lyier9lL ewil te02/L0/€2 ‘@leq
Auewisn
uijieg 68¥2 | pieogieiybneg :ued ok uoisiney 12 £245
62 s0ssnEYD JoMOPNY
Haws 10uLisy pieogiabneq X' oL
10901
Hod;
€d Juoor—L _L_duoot
\ \ 2T T W =
N (e
031 N L
aa VI\\
STYNDIS LNdNI
188 Jajowereq @l
WegzeL v 1 —
HYOI2Z0 Qo] Gdiarou
oo | - e tagigrou
e
NaE | Rt W T = = A — T L e QR
o L 3IE A W s T
e 7 e
! ” | »=— +0alg/ou
! I HY0L2ZIZOW | & N9/
|w ml ¥a 18/XL
N QL : [VXL € | U +YQTIgMHXL
3 T
dal wm S raEhesad er
21
== NZezeL Y 11 =

©peri

B.5 RJ45 Daughterboard

The RJ45 Daughterboard is a network daughterboard which allows using the RJ45 connec-

tor with the periCORE development board.

Figure 30: RJ45 Daughterboard.

N.C.
N.C.
N.C.
GND
RD_P
RD_N
N.C.
N.C.
N.C.

VCONO DA WN R
000000000

LED-
LED+
N.C.
GND
TD_N
TD_P
N.C.
N.C.
N.C.

18
17
16
15
14
13
12
11
10

J

Figure 31: RJ45 daughterboard pinout.

periCORE Development Kit User Guide, rev: 4

Doc.-No.:PRN.100.378

May 3, 2022

€
50QUPS PIE0GIRTUBNEG GHY\PIE0EIaIUBNEq SiTd v GUVOS AJQ JHOOHAA\UBa] SIEMPIEHDIOMD ald
fuewson L jo 1 1ess 6VIv9L oWl 1202/20/€2 -01eQ oo
uliieg 6821 pieogieiybneg :ued 'L uoisiey o oz
62 9assney Jemopny o
Haws Jeutiag pieoquelybneq sy am :

\7r .
2 u_mo_
2l

— —
m m
o o
v b
IS}
2
[l
€1
H6'6Y 4n} 4uo0} y
! 4667 9 0 €0 =
I o
= T -ad
\ T N” 108
\ — +
‘ e
_ — -aL
466y ant U004 ZH vy
\\\\\\\\\\\ H6'6Y) iC| Nol—l 6|_| CHl ey
— ey d
N QL
dal
o A
==

©peri May 3, 2022

C Sensor/Actuator Daughterboards

C.1 PT100 Daughterboard

The PT100 Daughterboard allows the development of periNODE-PT100 sensor applications
with the periCORE development board. The daughterboard uses an ADS112C04, a 16-bit
ADC from Texas Instruments, as an analog frontend and interface between the periCORE

and the PT100.

Figure 32: PT100 Daughterboard

The ciruit is designed to be used with 3-wire PT100 sensors.

periCORE Development Kit User Guide, rev: 4 Page 58
Doc.-No.:PRN.100.378

https://www.ti.com/product/ADS112C04?keyMatch=ADS112C04&tisearch=search-everything&usecase=GPN

14 € 4 I
00Qyos p1eogisiybned 001 Ld\Pieogieubned 001 1d\r advOs A3d 3400Hed\UBISeq SIEMPIBH\HOM\D ElE
Auewsss 2 40 2 198us ELSPYL ewiy 1202/L0/92 ‘e1eq NOOOA_ —OOOA_
uieg 68vzL pieogieyybneq ped 1L uoisiney W oz1g wod Hoa,
62 99ssNEY) Jomopny - -
HqWs 18uLIad pJeoquayybneq 0oL ld opiL

)

= %101
—
o o e H_SOLI % yuddol w61
00Z118QV 9

S

%101
= P
g g &
— S 8 % 4 E
0 = 9510502.0837S
| - o
ZESNE T~ Y 2 NI g 5
j0IdD = w =~
. 13534 -
———— 8 e 5 951050208378
201D AQuqu !
0y e | W NIV C
j0IdD d o1 v
ov NV
kol vas INY (oo LiF
WL |y vas ot €l 8
mm_H_ mm_H_ 7080l o) oS g S U g m_él_l D] w,— € O s
=]] o) ¥0 = O
0 o %10 H
= = T O
4ugol 2
OQEAE OTEAE o0SAe OTEAE Sl—le\e oL
¢ I
Y
NN
REERER er }
= >N =
== Y3QVaH LHOMN g2 ¥3QV3H 1437
2r iy
ano ano
<l A AS'E -
- vas NV -
v £ Bos Md odene
TR XL™L3vn TWMd
XL 199 wmhw% Smuw 4ol U001
CECHEVE - B N Ao 10
IWMd 8 /\ v
STYNOIS QUVOSYIHLOW oagEne
¥ 7 3

©peri May 3, 2022

C.2 0-10V Daughterboard

The 0-10V Daughterboard allows connecting sensors with 0-10V analog output signal to
the periCORE development board.

v e &b e vV

Figure 33: 0-10V Daughterboard

Signal at pin 4 of the terminal connector can be used for initiating and controling the teach-
ing process of the sensor. It is an open-drain output driven by an N-channel MOSFET. The
gate of the MOSFET is connected with the signal GP101 of the periCORE.

periCORE Development Kit User Guide, rev: 4 Page 60
Doc.-No.:PRN.100.378

[c
30QUJS PIEOgIaIUBNEG AQL0\PIE0GIaIUBNEG A0 L0\UBSSq SIEMPIEH IOM:D £
¢ 0 ¢ sy cg0ele ewlL 1202/0/9¢ eleq
Auewssn
uilleg 68421 pieogieiybneq :ued N3 uosinay W 0z
62 sessNEYD Jomopny
HqWD jouLiad pleogueiybneq A0 L-0 oL
20901 10901
uad uad

Ho| } }
SH =N =N =,
Nmovo,\/m/
bo 1a
£-d1ENED2E 128 4u001 wES 220v0Y L
cd 10 74 €a
2 } - 0
Wig9L H009 o
| |
TNV y = S INdNI 3 o é
HOVAL z O
I O
oTAve
0 1
oD
15
20AVE
Pl
S
NN
H3av3H IIaaIN er }
— >N —
=— 43AV3H LHOM gz HIAYIH L430
or Iy
ano ane
&1 rs nee B2
— vdas NV
MDGIO “ 10s SNMd M
9S O 8 X1 1uvn 1M
Xd_LHVN XU~ LEVN N [
XL 14V 9 W& 26140 1o1do [F-<
20140/ | o I
e s TNV

STYNDIS advOogd3IHLON

May 3, 2022

' _ € 2 L
T o JWAL\[E50T E1EGATY ORES £
Auewsen | 260621 _Pwil TE0eR0RE oG
49d - T | e e p— oo 000
(Hawo pie0gIalybneq Oldo T

4U00k H 4ni H 4u00k
80 0 9

As the name suggests this daughterboard is intended to provide peripheral interfaces for

C.3 GPIO Daughterboard
periNODE-GPIO similar applications.

©peri

ICRZS) 20N
M
T zz 93282
R £555 No0Y =g e
Wﬁ n Y0dN3
XH NIz ¢ oaene
13 XL - [
oL
X 6] Xt oS S vasoa
- <. 105 0al
T
Z01 G| O oonn [E X
=5<Cch e © OHl
=85ER S .
EHEZAT Ol =
o
___ 3U00F —O0
0 v
oTene 201do Zo1 T o
o1 3
v 1
- H-ESNN \a
— A|I_I 20V
z=z LR ¥o¥o¥a)
0 2855 Nwnowy tog 2] B B -
Wﬁ n 0dN3
XH NIz ¢ oaene
1 XL - [
oL
X 6] Xt oS VoS oa
- . 10500
T
Tor G| O
SISZeXYIN
___ 3U00F o
19 E4
oaere |2 oA oT¢eAe
1 OIdD
STVYNDIS AHYO843IHLION
14 € 2 _ 3

Page 62

periCORE Development Kit User Guide, rev: 4

Doc.-No.:PRN.100.378

©peri May 3, 2022

D List of Figures

1 Development Kit Overview 5
2 periCOREs hardware blocks. 6
3 periCOREs dimensionsinmm., 6
4 The software architecture with Custom Application template, provided by

Perinet. e e 7
5 Top view on periCORE development board with all jumpers in default position,

including all daughterboards. 8
6 M8 Hybrid Male daughterboard. 10
7 Network communication daughterboard pinout. 11
8 Sensor/actuator daughterboard pinout. 12
9 System architecture of periCORE development kit setup. 13
10 Using Remote Containers Extension in Visual Studio Code ©.. 13
11 periSTART device with label information. 15
12 Excerpt from pericoredbg Container Web Ul, using mDNS in the browser. Gen-

erate SSH One time password for user root access by clicking on the Gener-

atebutton. e 16
13 Firmware Architecture of periCORE based applications. Green boxes indicate

components that are common for all applications. On the other hand, grey

boxes define application specific components. 18
14 Network Architecture of a periCORE based firmware application. Green and

green-dashed boxes indicate components that are provided by libperiCORE,

hence are common for all applications. On the other hand grey boxes define

application specific components, like Endpoints used for both HTTP Server

and MQTT Client. e e 19
15 Example application HTTP Server with two endpoints, one for either HTTP

GET and PATCH request handling. 22
16 Example application MQTT Client with one MQTTPublisherEndpoint and one

MQTTSubscriberEndpoint. e 24
17 Web Ul structure of periCORE based applications. Red boxes indicate static

content (header and footer), whereas the actual content (green box) is dynam-

ically modified when navigating to other web pages using the header tabs. . . 26
18 MBS8H Male Daughterboard. 44
19 MBS8H Male connector drawing and pinout. 44
20 MB8H Male daughterboard pinout. 44
21 MB8H Male Daughterboard., 47
22 MBS8H Female connector drawingand pinout. 47
23 MB8H Female daughterboard pinout. 47
24 HARTING T1 Daughterboard., 50
25 HARTING T1 connector drawingand pinout. 50
26 HARTING T1 daughterboard pinout. 50
27 ixDaughterboard. e 53
28 ix daughterboard pinassignment. L . 53
29 ixdaughterboardpinout. 54
30 RJ45Daughterboard. e 56

periCORE Development Kit User Guide, rev: 4 Page 63

Doc.-No.:PRN.100.378

©peri May 3, 2022

31 RJ45daughterboard pinout. oL 56

32 PT100 Daughterboard e 58

33 0-10V Daughterboardo 60
periCORE Development Kit User Guide, rev: 4 Page 64

Doc.-No.:PRN.100.378

©peri May 3, 2022

E List of Listings

1 Update application repository. If the docker container has also changed it will
indirectly be updated as well when using the container in Visual Studio Code ©. 14
2 Change debug target to pericoredbg Container mDNS name in settings.json. 15
3 Change default value to pericoredbg Container mDNS name in launch. json
(Excerptisshown). 16
4 Endpoint constructor definition. 20
5 Endpoint class method declarations of HTTP callback functions. 21
6 Endpoint outport declarations for PATCH and PUT methods. 21
7 Declaration of HTTPEndpoint class derived from Endpoint. 21
8 Excerpt from handle_request method of Endpointclass. 22
9 MQTTEndpoint class declaration serving as base class for both MQTTPublish-
erEndpoint and MQTTSubscriberEndpoint classes. 23
10 MQTTSubscriberEndpoint constructor definition. 23
11 MQTTPublisherEndpoint constructor definition. 24
12 html content created for Firmware Update Web page using Javascript. 27
13 Registering DOM content creation in Javascript Framework. 27
14 Javascript function to change header DOMcontent.. 28
15 Navigation link for new custom web page within peri_base.jsfile. 29
16 Example Javascript file fornewpage. 29
17 Register callback function for new web page in peri_base.jsfile. 29
18 Example call forloadingcssfile.. 30
19 Example call for loading css file after building. Out of convenience reasons
the Baseéb4 string is not shownentirely. 30
20 Ping command to Perinet device. 32
21 General command to proxy HTTP connections.. 32
22 Proxy command example. e e 32
periCORE Development Kit User Guide, rev: 4 Page 65

Doc.-No.:PRN.100.378

https://code.visualstudio.com/

©peri May 3, 2022

F Glossary

100BASE-T1 A Ethernet Standard where two endpoints are connected by a single twisted
pair cable. It is one of the so-called Single Pair Ethernet (SPE) standards. It operates
in full duplex with a data rate of 100 MBIt per second. Furthermore, it uses PAM-3
modulation with a voltage level from -1 to +1V, differentially on the two wires. 10, 11,
45,48

100BASE-TX A Ethernet Standard where two twisted pairs with differential signals are
used, one for each direction. The data rate is 100 MBit per second. It is also called
"Fast Ethernet". 10, 11, 54

ADC Analog Digital Converter. 58
APl Application Programming Interface. 3, 14, 18-20, 25, 31

Base64 Baseb4 allows representation of binary data in text format.. 25, 30, 65
css Cascading Style Sheets. 25, 30, 65

DC Direct current. 9

DNS-SD DNS Service Discovery [1] is a way of using standard DNS programming inter-
faces, servers and packet formats to browse the network for services. 6, 20

DOM Document Object Model. 26-28, 65
GND ground, zero potential mass.. 8

html HyperText Markup Language. 25-27, 30, 65

HTTP Hypertext Transfer Protocol is an application-layer protocol for transmitting hyper-
media documents, such as HTML. 14, 18-25, 30, 32, 63, 65

lloT Industrial Internet of Things. 5
IPv4 Internet Protocol Version 4, a communication protocol. 32

IPvé6 Internet Protocol Version 6 [10], a communication protocol. 19, 20, 32

jpeg An image file format. 30
js JavaScript. 25, 29, 30

JSON JavaScript Object Notation is standard text-based format for representing structured
data based on JavaScript object syntax. 15, 21, 22, 24

JTAG Joint Test Action Group is a standard that defines tools to debug embedded systems.
8,12

periCORE Development Kit User Guide, rev: 4 Page 66
Doc.-No.:PRN.100.378

©peri May 3, 2022

LED Light-Emitting Diode is a semiconductor that emits light when current flows through it.
9,11,48, 51, 54

LLMNR The Link-Local Multicast Name Resolution is a protocol based on the Domain Name
System packet format that allows IPvé hosts to perform name resolution for hosts on
the same local link. 20

Makefile Definition of set of tasks to be executed by GNU make tool. 25, 30
MDI Media Dependent Interface, a Fast-Ethernet chipset component. 9

mDNS multicast Domain Name Service [2], a protocol that implements a local distributed
name resolving mechanism. 6, 8, 15, 16, 20, 32, 63, 65

MOSFET Metal oxide semiconductor field-effect transistor. 60

MQTT Message Queuing Telemetry Transport is a lightweight, publish-subscribe based net-
work protocol that transports messages between devices. 14, 18-20, 23, 24, 63

mTILS Mutual TLS extends the TLS protocol by requiring clients to pass certificates, allowing
to provide authorization mechanisms of Application services. 20, 22, 25

OS Operating System. 17, 32

PC Personal Computer. 13

PCB Printed Circuit Board. 9

PHY Physical layer. Lowest layer of the OSI model. 11

png Portable Network Graphics - an image file format. 25, 30

RD Receive Data port. 11
REST REpresentational State Transfer, a web API style. 14, 19, 20, 25, 31

SDK Software Development Kit is a colletion of development tools. 5
SPE Single Pair Ethernet. 5, 14, 50

SPI The Serial Peripheral Interface (SPI) is a synchronous serial communication interface
specification used for inter IC communication. 14

SSH Secure Shell Protocol. 16, 63

TCP Transmission Control Protocol. 14-17, 32
TD Transmit Data port. 11

TLS Transport Layer Security Protocol. Used by Application Protocols like MQTT or HTTP
to allow secure data transfer. 20, 25

periCORE Development Kit User Guide, rev: 4 Page 67
Doc.-No.:PRN.100.378

©peri May 3, 2022

UART A Universal Asynchronous Receiver-Transmitter is a computer hardware device for
asynchronous serial communication. 3, 8, 12, 14, 16, 17

Ul User Interface. 5, 16, 18, 19, 25, 26, 28, 30, 31, 33, 63
URI Uniform Resource Identifier. 20-22, 29

USB Universal Serial Bus is a standard of the connection of peripherals to personal comput-
ers. 12,14, 15

periCORE Development Kit User Guide, rev: 4 Page 68
Doc.-No.:PRN.100.378

©peri May 3, 2022

G References

[1] S. Cheshire and M. Krochmal. DNS-Based Service Discovery. RFC 6763. http: //www .
rfc-editor.org/rfc/rfc6763.txt. RFC Editor, Feb. 2013. URL: http: //www.rfc-
editor.org/rfc/rfc6763.txt.

[2] S. Cheshire and M. Krochmal. Multicast DNS. RFC 6762. http://www.rfc-editor.
org/rfc/rfc6762.txt. RFC Editor, Feb. 2013. URL: http://www.rfc-editor.org/
rfc/rfc6762.txt.

[3] “Connectors for electrical and electronic components - Product requirements - Part
6: Connectors - Detail specification for 2-way and 4-way (data/power), shielded, free
and fixed connectors for transmission capability and power supply capability with fre-
quencies up to 600 MHz". In: [EC 63171-6 (2020). URL: https://www.beuth.de/de/
norm-entwurf/din-en-iec-63171-6/321547648.

[4] “Connectors for electrical and electronic equipment - Product requirements - Part 3-
124: Rectangular connectors - Detail specification for 10-way, shielded, free and fixed
connectors for I/0 and data transmission with frequencies up to 500 MHz". In: IEC
61076-3-124:2019 (2019). URL: https://www.vde-verlag.de/iec-normen/247243/
iec-61076-3-124-2019.html.

] Perinet GmbH. periCORE Datasheet. PRN.100.375. https://docs.perinet.io/.

[6] Perinet GmbH. periCORE Development Kit Setup Application Note. PRN.100.376.

https://docs.perinet.io/.

[7] Perinet GmbH. periCORE Firmware Development Application Note. PRN.100.379.
https://docs.perinet.io/.

[8] Perinet GmbH. periMICA User Guide. PRN.100.392. https://docs.perinet.io/.

] Perinet GmbH. séve Operating System Datasheet. PRN.100.377. https : / /docs .
perinet.io/.

[10] R. Hinden and S. Deering. IP Version 6 Addressing Architecture. RFC 4291. http://wuw.

rfc-editor.org/rfc/rfc4291.txt. RFC Editor, Feb. 2006. URL: http: //www.rfc-
editor.org/rfc/rfc4291.txt.

periCORE Development Kit User Guide, rev: 4 Page 69
Doc.-No.:PRN.100.378

http://www.rfc-editor.org/rfc/rfc6763.txt
http://www.rfc-editor.org/rfc/rfc6763.txt
http://www.rfc-editor.org/rfc/rfc6763.txt
http://www.rfc-editor.org/rfc/rfc6763.txt
http://www.rfc-editor.org/rfc/rfc6762.txt
http://www.rfc-editor.org/rfc/rfc6762.txt
http://www.rfc-editor.org/rfc/rfc6762.txt
http://www.rfc-editor.org/rfc/rfc6762.txt
https://www.beuth.de/de/norm-entwurf/din-en-iec-63171-6/321547648
https://www.beuth.de/de/norm-entwurf/din-en-iec-63171-6/321547648
https://www.vde-verlag.de/iec-normen/247243/iec-61076-3-124-2019.html
https://www.vde-verlag.de/iec-normen/247243/iec-61076-3-124-2019.html
https://docs.perinet.io/
https://docs.perinet.io/
https://docs.perinet.io/
https://docs.perinet.io/
https://docs.perinet.io/
https://docs.perinet.io/
http://www.rfc-editor.org/rfc/rfc4291.txt
http://www.rfc-editor.org/rfc/rfc4291.txt
http://www.rfc-editor.org/rfc/rfc4291.txt
http://www.rfc-editor.org/rfc/rfc4291.txt

©peri

May 3, 2022

Revision History

Revision Date

1 January 9, 2022

2 January 24, 2022

3 March 2, 2022
4 May 3, 2022

Authorf(s)

Christian
Koehler

Dominik Pern-
thaler, Chris-
tian Koehler,
Adrian
Schwarzer

Dilmari Heuer

Christian
Koehler

Description

Initial release: software development

Added hardware architecture. Updated soft-
ware development section

Add Overview section

Add Troubleshooting and System Architec-
ture sections. Update all other sections with
latest content.

periCORE Development Kit User Guide, rev: 4
Doc.-No.:PRN.100.378

Page 70

	Overview
	Targeted Applications
	Key Features
	Interfaces
	Operational Parameters
	Package
	Compliance
	Security
	Software Library libperiCORE

	Hardware Architecture
	Power Supply
	Network Interfaces
	Sensor/actuator Interface
	Debug interface
	UART interface

	System Architecture
	Overview
	Host PC setup
	periCORE network interface
	Debug interface
	UART interface

	Software Development
	periCORE Software API structure
	sève OS
	Extend libperiCORE Network Services
	Web User Interface

	Troubleshooting
	Labeling and Ordering
	Contact & Support
	Development Board
	Network Daughterboards
	M8 Hybrid Male Connector Daughterboard
	M8 Hybrid Female Connector Daughterboard
	HARTING T1 Industrial Connector Daughterboard
	ix Daughterboard
	RJ45 Daughterboard

	Sensor/Actuator Daughterboards
	PT100 Daughterboard
	0-10V Daughterboard
	GPIO Daughterboard

	List of Figures
	List of Listings
	Glossary
	References

