V 1.9

Revised 12/22

EZO-CO2TM

Embedded NDIR CO2 Sensor

Reads

Range

Calibration

Pressure

Response time

Resolution

Accuracy

Connector

Warmup time

Cable length

Data protocol

Default I²C address

Data format

Operating voltage

Life expectancy

Gaseous CO2

0 - 10,000 ppm

Factory calibrated

Atmosphere only

1 reading per second

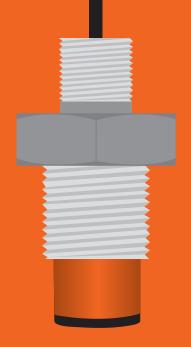
1 ppm

(+/- 5%) + (+/- 50 ppm)

5 lead data cable

10 seconds

1 meter


UART & I²C

105 (0x69)

ASCII

3.3V - 5V

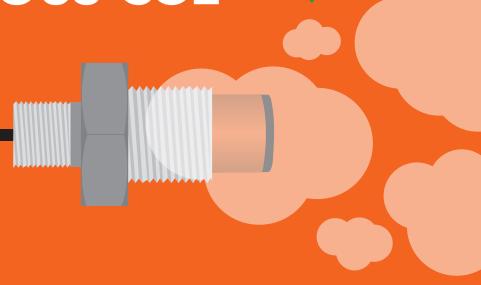
~5.5 years

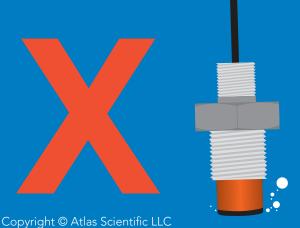
Table of contents

Operating principle	6	Sensor warm-up	9
Physical properties	7	Calibration theory	10
Sensor properties	7	Custom calibration	10
Pin out	8	Default state	11
		Available data protocol	12

UART

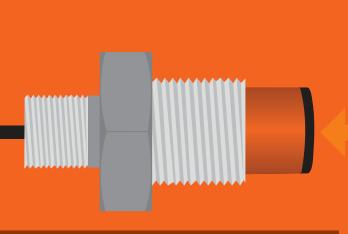
UART mode	14
Receiving data from device	15
Sending commands to device	16
LED color definition	17
UART quick command page	18
LED control	19
Find	20
Continuous mode	21
Single reading mode	22
Alarm	23
Custom calibration	24
Enable/disable internal temp	25
Naming device	26
Device information	27
Response codes	28
Reading device status	29
Sleep mode/low power	30
Change baud rate	31
Protocol lock	32
Factory reset	33
Change to I2C mode	34
Manual switching to I2C	35


I²C


I ² C mode	37
Sending commands	38
Requesting data	39
Response codes	40
Processing delay	40
LED color definition	41
I ² C quick command page	42
LED control	43
Find	44
Taking reading	45
Alarm	46
Custom calibration	47
Enable/disable internal temp	48
Naming device	49
Device information	50
Reading device status	51
Sleep mode/low power	52
Protocol lock	53
I ² C address change	54
Factory reset	55
Change to UART mode	56
Manual switching to UART	57

Attention

The EZO-CO2™ is 100% operational out of the box. **CALIBRATION IS UNNECESSARY**



This sensor does not read dissolved CO2. DO NOT SUBMERGE!

Attention

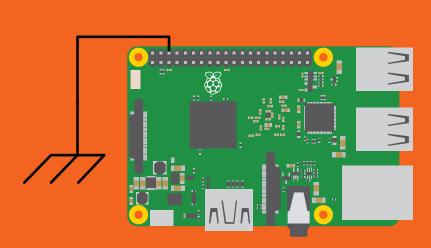
Do not point the sensor directly at bright lights

Pointing the sensor directly at a bright light will give false readings. (it will not damage the sensor.)

If the CO2 sensor is returning false readings when in a bright environment, try attaching a PVC Tee to the sensor, to block the direct light.

(or just don't point the sensor at bright lights.)

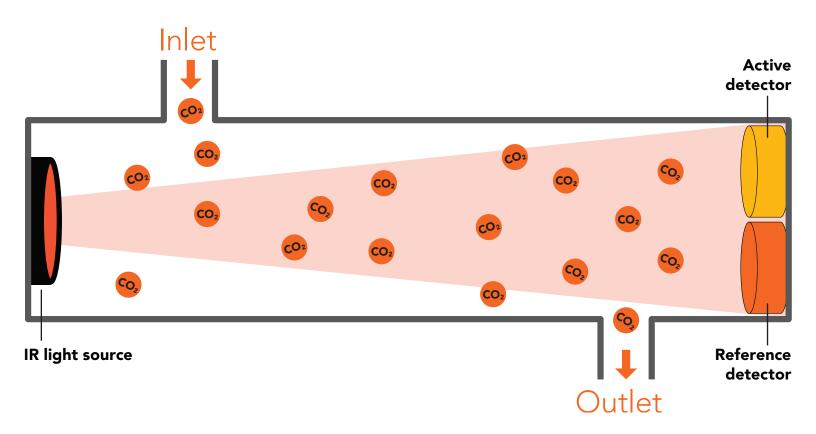
Attention

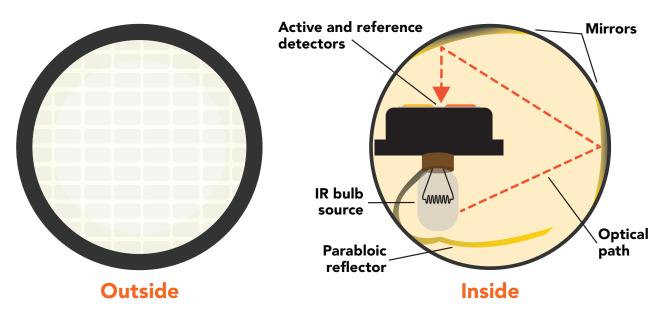

This CO2 sensor is sensitive to ground loops.

Put simply, a ground loop is when the ground line is not actually 0 volts. (It's the buzzing you hear in audio equipment)

If your system has a ground loop you will see readings that are between 100 and 250 ppm higher than expected. Atlas Scientific has detected ground loops on many different Raspberry Pi's. If this sensor is connected to a Raspberry Pi you should expect to have a ground loop.

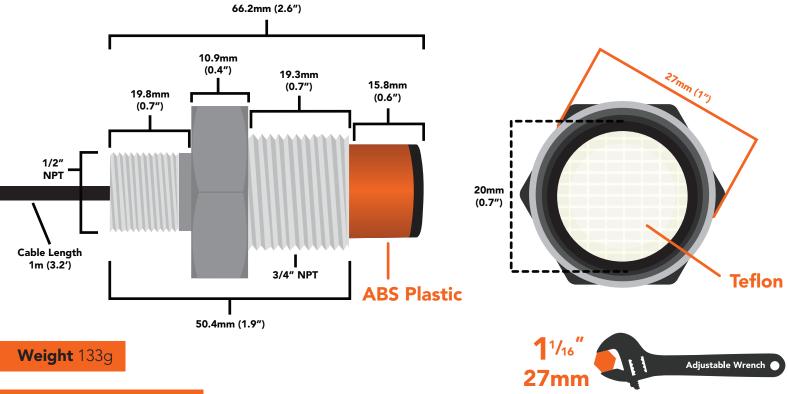
There are two ways to fix this problem


- 1. Connect a ground pin from the Raspberry Pi (or other device) to an earth ground.
- 2. Connect the body of the CO2 sensor to a metal object that is connected to an earth ground.

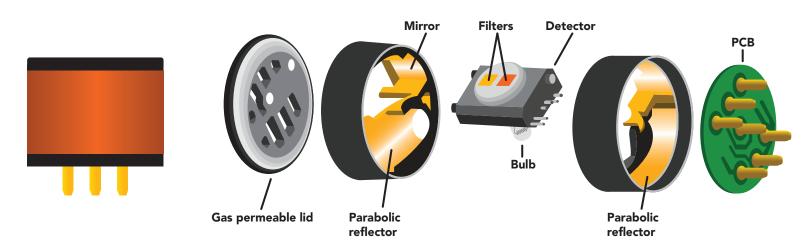


Operating principle

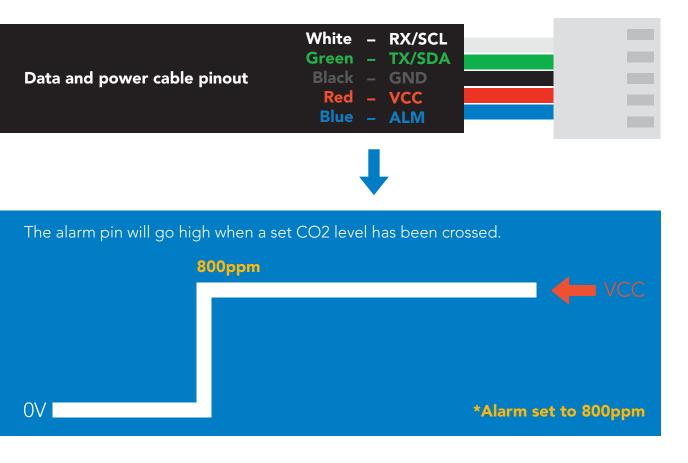
The Atlas Scientific EZO- $CO2^{\text{TM}}$ Embedded CO2 Sensor uses a non-dispersive infra-red (NDIR) gas detection cell to derive CO2 content in a gaseous matrix. The NDIR detection cell is a single wavelength spectrophotometer that has been specifically designed to detect 4.2 μ m infrared radiation.


Gaseous CO2 has a prominent absorption band centered at 4.2µm. CO2 content is derived by quantifying how much light energy has been lost when it travels through a gaseous matrix over a fixed distance.

Physical properties


The EZO-CO2[™] sensor only detects gaseous CO2 levels. This device cannot read dissolved CO2 levels. *DO NOT SUBMERGE IN LIQUID*.

Body 316 Stainless Steel


IP60

Sensor properties

Pin out

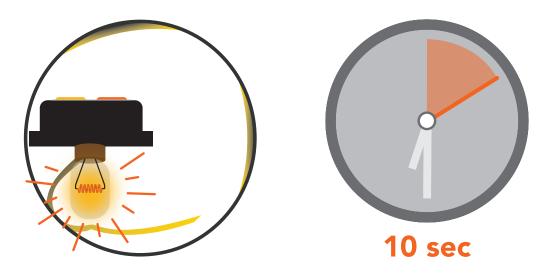
If unused leave **ALM** floating. Do not connect **ALM** to **VCC** or **GND**.

See page 23 to enable CO2 level alarm in UART mode. See page 46 to enable CO2 level alarm in I2C mode.

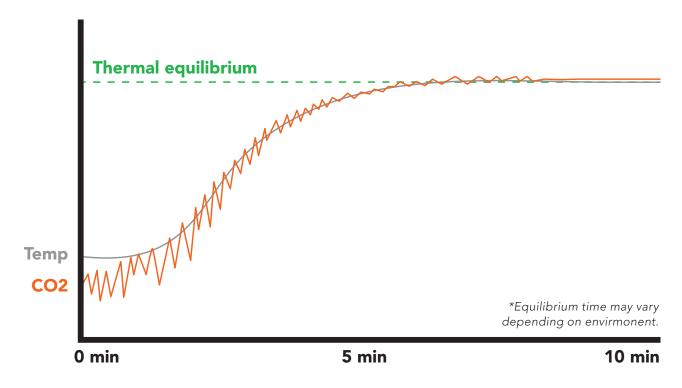
	LED	MAX	SLEEP	
5V	ON	45 mA	3.4 mA	
	OFF	44 mA	3. 1 11 <i>j</i> (
3.3V	ON	42 mA	3.0 mA	
	OFF	41 mA	3.3 11, 11	

Power consumption Absolute max ratings

Parameter	MIN	TYP	MAX
Storage temperature	-65 °C		75 °C
Operational temperature	-20 °C	25 °C	50 °C
VCC	3.3V	3.3V	5.5V


Humidity Range 0 to 95% rh non-condensing

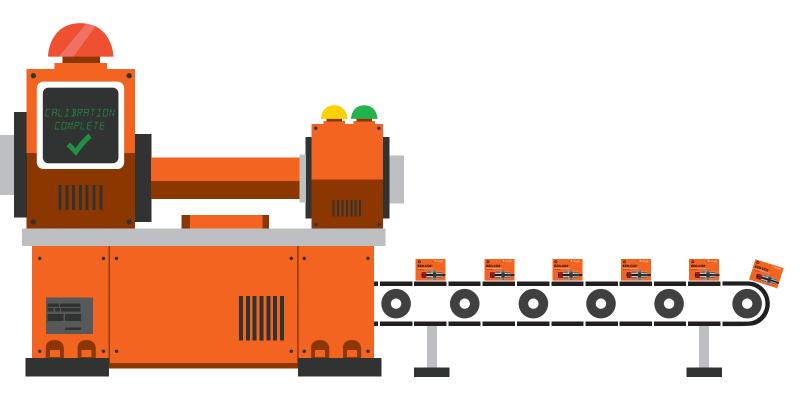
IP60


Sensor warm-up

When the Atlas Scientific EZO-CO2[™] Embedded CO2 Sensor is first powered on *(or wakes up from sleep mode)* the sensor must warm-up before it can output readings. The warm-up process takes 10 seconds to complete.

During the first 10 seconds of operation the output will be: *warm

Once warming is finished, CO2 readings will be output. The device will continue to warm-up over several minutes. As the internal temperature stabilizes, so will the CO2 readings.



To see the internal temperature of the sensor and watch as it stabilizes, use the 'O' command found on page 24.

Calibration theory

The Atlas Scientific EZO-CO2™ Embedded CO2 Sensor comes pre-calibrated, and does not need to be recalibrated. Atlas Scientific performs a two-point factory calibration as part of the manufacturing process.

Low point calibration = 0 ppm High point calibration = 4,000 ppm

The factory calibration data is permanently stored in the sensor and cannot be erased.

Custom calibration

One or two-point calibration can be done at any time. When custom calibration is used, factory calibration will be ignored. To revert back to the factory calibration simply clear the custom calibration.

See page 24 or 47 for custom calibration commands.

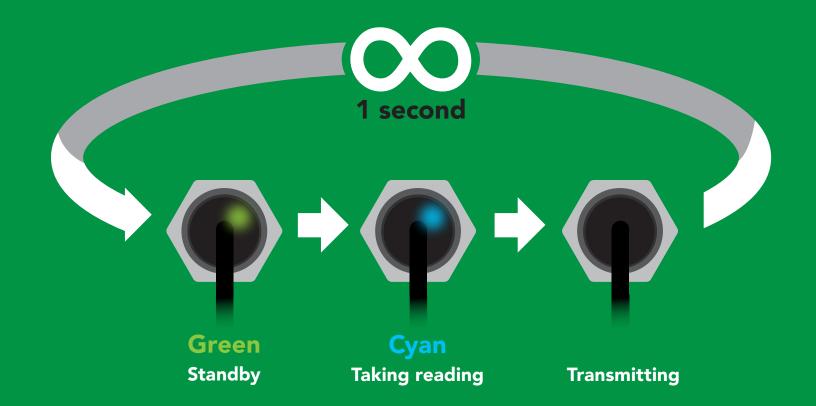
Default state

UART mode

Baud

Readings

Speed


LED

9,600

continuous

1 second

on

Available data protocols

UART

default

1²C

X Unavailable data protocols

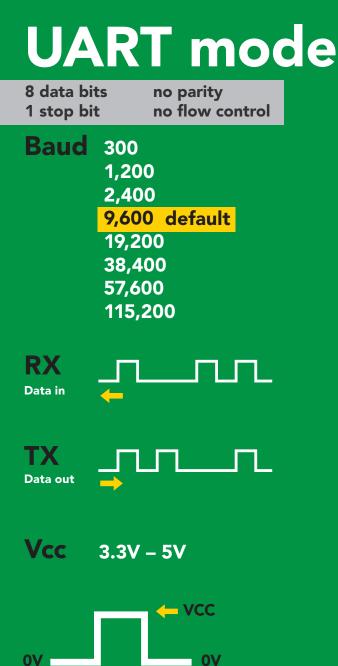
SPI

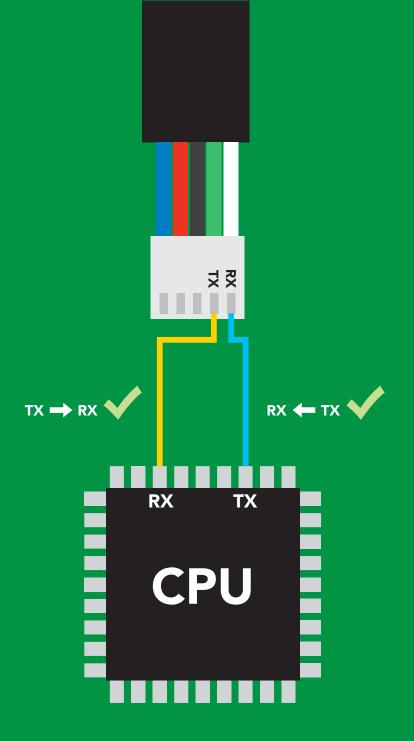
Analog

RS-485

Mod Bus

4-20mA


UART mode


Settings that are retained if power is cut

Baud rate
Calibration
Continuous mode
Device name
Enable/disable response codes
Hardware switch to I²C mode
LED control
Protocol lock
Software switch to I²C mode

Settings that are **NOT** retained if power is cut

Sleep mode

Data format

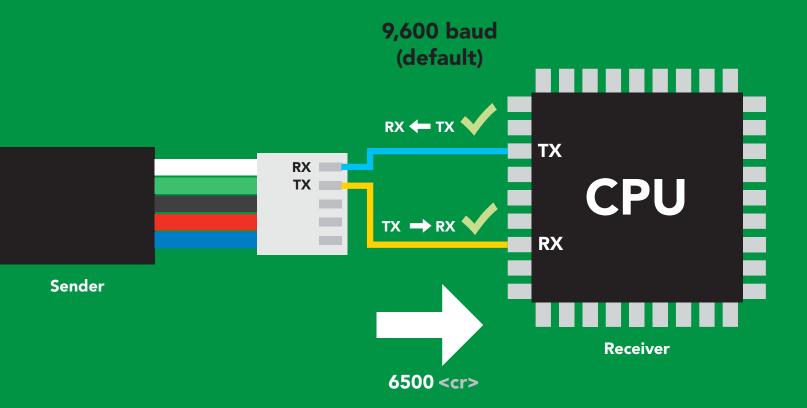
Reading **Gaseous CO2**

Units **PPM**

Encoding ASCII

Format string

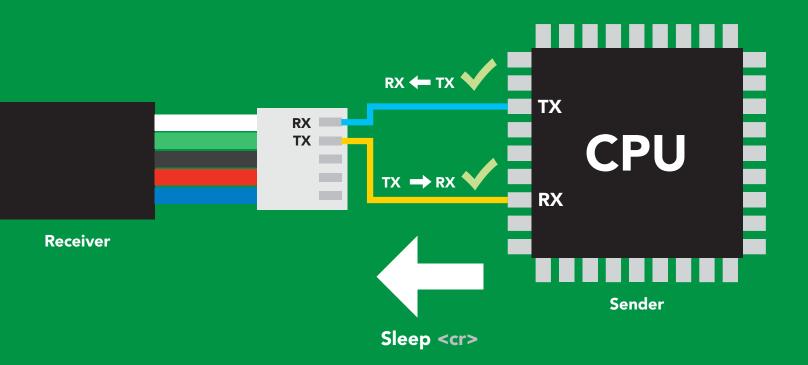
Terminator carriage return Data type **Decimal places** 0 **Smallest string 2 characters** Largest string


unsigned int

12 characters

Receiving data from device

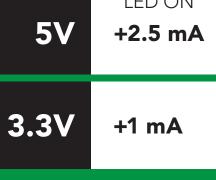
Advanced


ASCII: 6 5

36 35 30 30

Dec: 54 53 48 48

Sending commands to device


Advanced

LED color definition

UART mode command quick reference

All commands are ASCII strings or single ASCII characters.

Command	Function		Default state
Alarm	enable/disable alarm	pg. 23	n/a
Baud	change baud rate	pg. 31	9,600
С	enable/disable continuous mode	pg. 21	enabled
Cal	performs custom calibration	pg. 24	n/a
Factory	enable factory reset	pg. 33	n/a
Find	finds device with blinking white LED	pg. 20	n/a
i	device information	pg. 27	n/a
I2C	change to I ² C mode	pg. 34	not set
L	enable/disable LED	pg. 19	enabled
Name	set/show name of device	pg. 26	not set
0	enable/disable internal temperature	pg. 25	disabled
Plock	enable/disable protocol lock	pg. 32	n/a
R	returns a single reading	pg. 22	n/a
Sleep	enter sleep mode/low power	pg. 30	n/a
Status	retrieve Status Information	pg. 29	n/a
*OK	enable/disable response codes	pg. 28	n/a

LED control

Command syntax

L,1 <cr> LED on default

L,0 <cr> LED off

L,? <cr> LED state on/off?

Example

Response

L,1 <cr>

*OK <cr>

L,0 <cr>

*OK <cr>

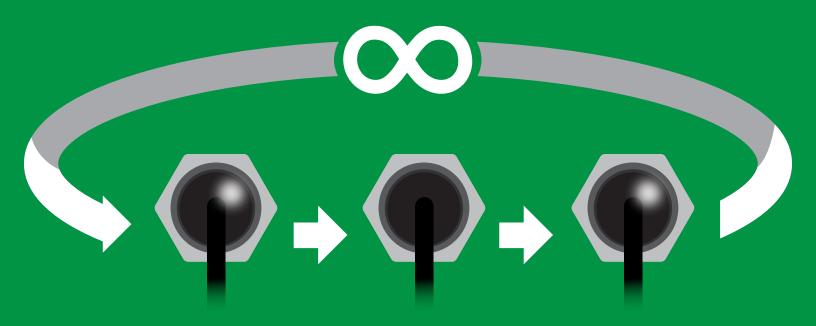
L,? <cr>

?L,1 <cr> or ?L,0 <cr>

*OK <cr>

Find

Command syntax


This command will disable continuous mode Send any character or command to terminate find.

Find <cr> LED rapidly blinks white, used to help find device

Example Response

Find <cr>

*OK <cr>

Continuous mode

Command syntax

C,1 <cr> enable continuous readings once per second default

C,n <cr> continuous readings every n seconds (n = 2 to 99 sec)

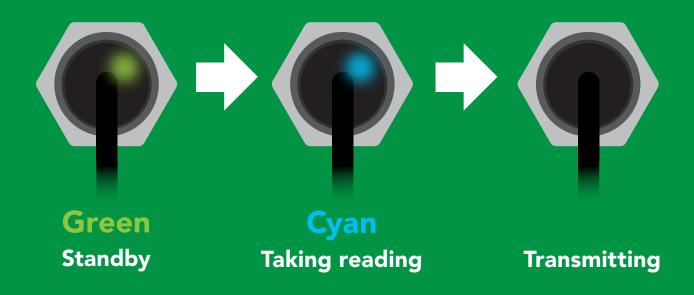
C,0 <cr> disable continuous readings

C,? <cr> continuous reading mode on/off?

Example	Response
C,1 <cr></cr>	*OK <cr> CO2 (1 sec) <cr> CO2 (2 sec) <cr> CO2 (n sec) <cr></cr></cr></cr></cr>
C,30 <cr></cr>	*OK <cr> CO2 (30 sec) <cr> CO2 (60 sec) <cr> CO2 (90 sec) <cr></cr></cr></cr></cr>
C,0 <cr></cr>	*OK <cr></cr>
C,? <cr></cr>	?C,1 <cr> or ?C,0 <cr> or ?C,30 <cr> *OK <cr></cr></cr></cr></cr>

Single reading mode

Command syntax


R <cr> takes single reading

Example

Response

R <cr>

6500 <cr> *OK <cr>>

Alarm

Command syntax

The alarm pin will = 1 when CO2 levels are > alarm set point. Alarm tolerance sets how far below the set point CO2 levels need to drop before the pin will = 0 again.

Alarm, en, [1, 0] enable / disable alarm <cr>

Alarm,n sets alarm <cr>

sets alarm tolerance (0-500 ppm) Alarm, tol, n <cr>

Alarm,? alarm set? <cr>

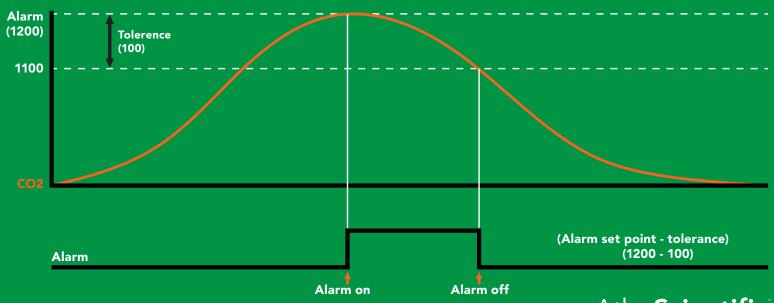
Example

Alarm,en,1 <cr>

Alarm, 1200 < cr>

Alarm, tol, 100 <cr>

Alarm,? <cr>


Response

*OK <cr> Enable alarm

*OK <cr>

CO2 level must fall 100 ppm below *OK <cr> set point for alarm to reset.

?,alarm,1200,100,1 <cr> if all are enabled

Custom calibration

Command syntax

High point calibration can be from 3,000 ppm to 5,000 ppm. Calibration outside of that range my lead to accuracy issues.

calibrates the high point Cal,n <cr>

Cal,0 calibrates the zero point <cr>

Cal, clear restores calibration to factory settings <cr>

Cal,? device calibrated? <cr>

Example

Cal,3900 <cr>

Cal, 0 < cr>

Cal, clear <cr>

Cal,? <cr>

Response

*OK <cr>

*OK <cr>

*OK <cr>

?Cal,0 <cr> or ?Cal,1 <cr> or ?Cal,2 <cr> or

?Cal,3 <cr> *OK <cr>

This device comes pre-calibrated.

Custom calibration should not be performed without scientific grade calibration gasses.

Enable/disable internal temperature from output string

Command syntax

enable or disable internal temperature O,t,[1,0]

Example	Response
O,t,1 <cr></cr>	*OK <cr> enable temperature</cr>
O,t,0 <cr></cr>	*OK <cr> disable temperature</cr>
O,? <cr></cr>	?O,ppm,t <cr> if internal temp is enabled</cr>

Enabling the internal temperature should only be used to confirm that the device is at thermal equilibrium. Refer to page 6

Naming device

Command syntax

Do not use spaces in the name

Name, n < cr> set name

Name, <cr> clears name

Name,? <cr> show name

n = 8 9 10 11 12 13 14 15 16

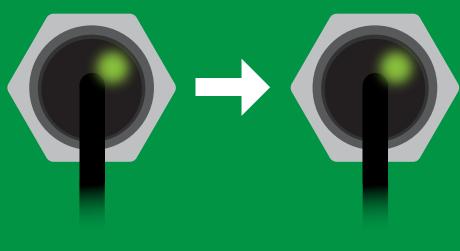
Up to 16 ASCII characters

Example

Response

Name, <cr> *OK <cr> name has been cleared

Name,zzt <cr>


*OK <cr>

Name,? <cr>

?Name,zzt <cr> *OK <cr>

Name,zzt

Name,?

*OK <cr>

?Name,zzt <cr> *OK <cr>

Device information

Command syntax

i <cr> device information

Example

Response

i <cr>

?i,CO2,1.0 <cr> *OK <cr>>

Response breakdown

?i, CO2, 1.0 Device Firmware

Response codes

Command syntax

*OK,1 <cr> enable response

default

*OK,0 <cr> disable response

*OK,? <cr> response on/off?

Example

Response

R <cr>

6,500 <cr> *OK <cr>

*OK,0 <cr>

no response, *OK disabled

R <cr>

6,500 <cr> *OK disabled

*OK,? <cr>

?*OK,1 <cr> or ?*OK,0 <cr>

Other response codes

unknown command *ER

*OV over volt (VCC>=5.5V)

*UV under volt (VCC<=3.1V)

*RS reset

*RE boot up complete, ready

entering sleep mode *SL

wake up *WA

These response codes cannot be disabled

Reading device status

Command syntax

Status <cr> voltage at Vcc pin and reason for last restart

Example

Response

Status <cr>

?Status, P, 5.038 < cr>

*OK <cr>

Response breakdown

?Status,

P,

5.038

Reason for restart

Voltage at Vcc

Restart codes

powered off

software reset

brown out

watchdog W

unknown

Sleep mode/low power

Command syntax

Send any character or command to awaken device.

Sleep <cr> enter sleep mode/low power

Exam	mb	le

Response

Sleep <cr>

*OK <cr>

*SL <cr>

Any command

*WA <cr> wakes up device

MAX **SLEEP 5V** 45 mA 3.4 mA

3.3V

42 mA

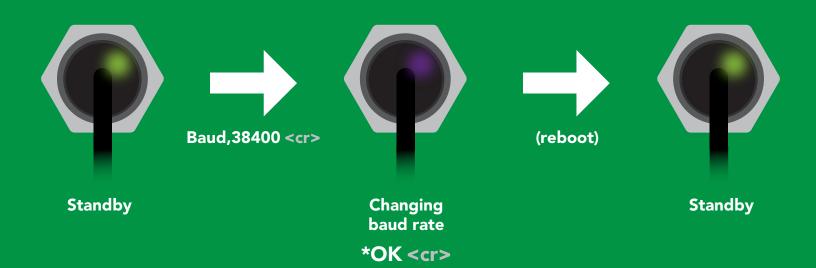
3.0 mA

Change baud rate

Command syntax

Baud,n <cr> change baud rate

Example


Response

Baud, 38400 < cr>

*OK <cr>

Baud,? <cr>

?Baud,38400 <cr> *OK <cr>

Protocol lock

Command syntax

Locks device to UART mode.

Plock,1 <cr> enable Plock

default Plock,0 <cr> disable Plock

Plock,? <cr> Plock on/off?

Example

Response

Plock,1 <cr>

*OK <cr>

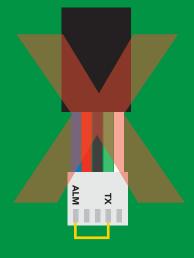
Plock,0 <cr>

*OK <cr>

Plock,? <cr>

?Plock,1 <<r> or ?Plock,0 <<r>>

Plock,1



cannot change to I²C *ER <cr>

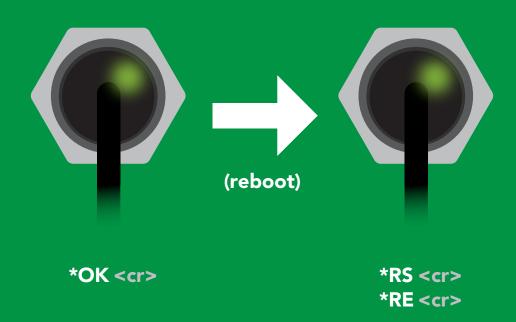
cannot change to I²C

Factory reset

Command syntax

Clears custom calibration "*OK" enabled

Factory <cr> enable factory reset


Example

Response

Factory <cr>

*OK <cr>

Factory <cr>

Baud rate will not change

Change to I²C mode

Command syntax

Default I²C address 105 (0x69)

I2C,n <cr> sets I2C address and reboots into I2C mode

n = any number 1 - 127

Example

Response

12C,100 <cr>

*OK (reboot in I²C mode)

Wrong example

Response

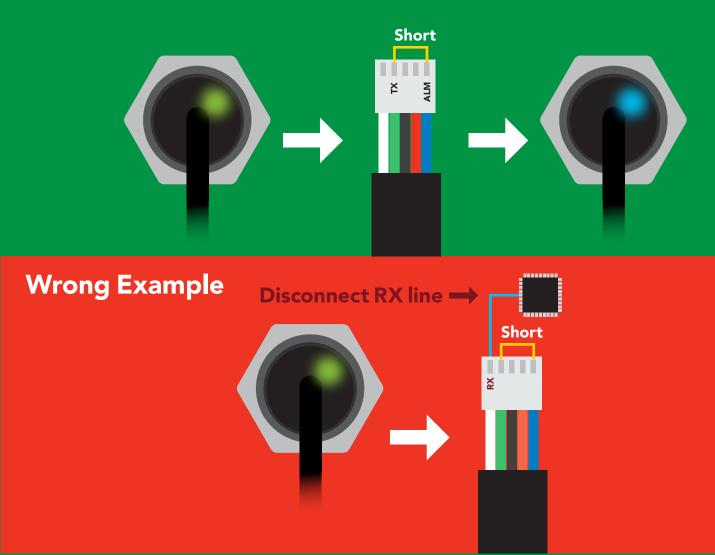
I2C,139 <cr> n ≯ 127

*ER <cr>

I2C,100

(reboot)

Green *OK <cr>


Blue now in I²C mode

Manual switching to I²C

- **Disconnect ground (power off)**
- Disconnect TX and RX
- Connect TX to ALM
- Confirm RX is disconnected
- Connect ground (power on)
- Wait for LED to change from Green to Blue
- Disconnect ground (power off)
- Reconnect all data and power

Manually switching to I²C will set the I²C address to 105 (0x69)

Example

l²C mode

The I²C protocol is considerably more complex than the UART (RS-232) protocol. Atlas Scientific assumes the embedded systems engineer understands this protocol.

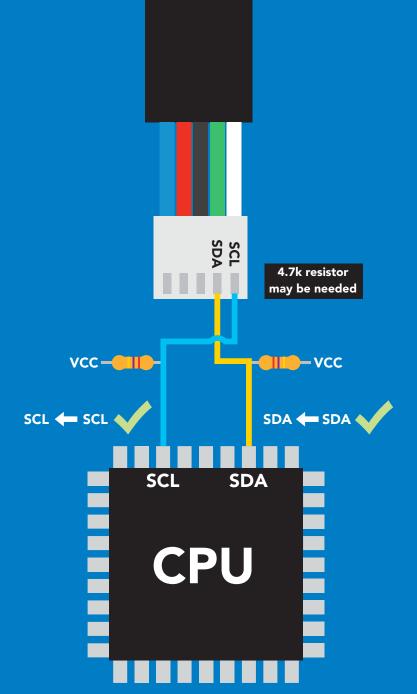
To set your EZO™ device into I²C mode click here

Settings that are retained if power is cut

Calibration
Change I²C address
Hardware switch to UART mode
LED control
Protocol lock
Software switch to UART mode

Settings that are **NOT** retained if power is cut

Sleep mode


I²C mode

I²C address (0x01 - 0x7F)

105 (0x69) default

Vcc 3.3V - 5.5V

Clock speed 100 - 400 kHz

Data format

Gaseous CO2 Reading

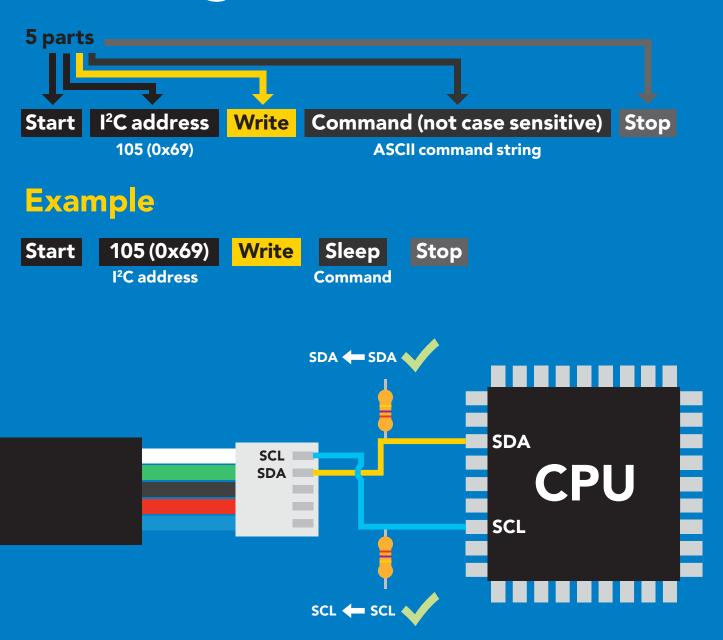
Units **PPM**

Encoding ASCII

string **Format**

Data type **Decimal places Smallest string**

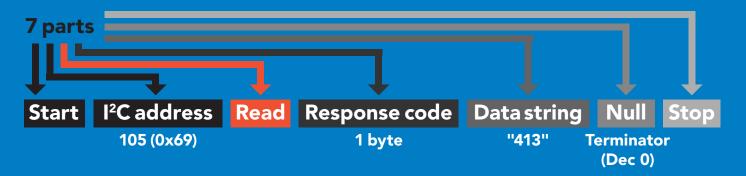
Largest string

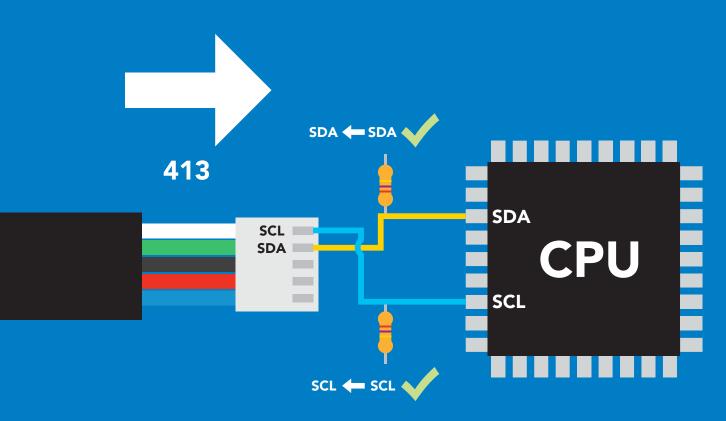

unsigned int

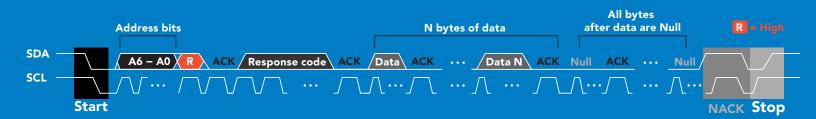
2 characters

12 characters

Sending commands to device

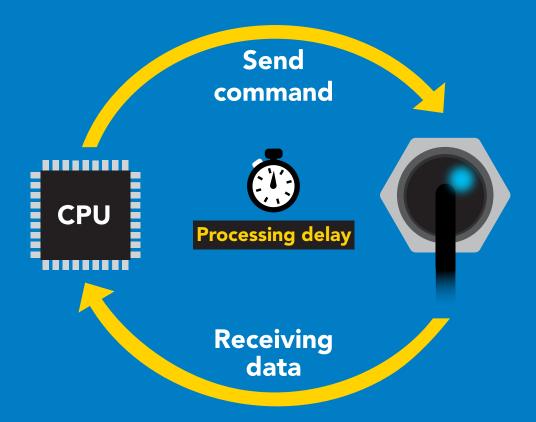



Advanced



Requesting data from device

Advanced



Response codes & processing delay

After a command has been issued, a 1 byte response code can be read in order to confirm that the command was processed successfully.

Reading back the response code is completely optional, and is not required for normal operation.

Example

I2C start:

I2C address;

I2C_write(EZO_command);

I2C_stop;

delay(300);

Processing delay

I2C start: I2C_address; Char[] = I2C read; I2C_stop;

If there is no processing delay or the processing delay is too short, the response code will always be 254.

Response codes

Single byte, not string

255 no data to send

254 still processing, not ready

syntax error

successful request

LED color definition

I²C standby

Green Taking reading

Changing I²C address

Command not understood

White **Find**

LED ON **5V** +2.5 mA +1 mA 3.3V

I²C mode command quick reference

All commands are ASCII strings or single ASCII characters.

Command	Function	
Alarm	enable/disable alarm	pg. 46
Baud	switch back to UART mode	pg. 56
Cal	performs custom calibration	pg. 47
Factory	enable factory reset	pg. 55
Find	finds device with blinking white LED	pg. 44
i	device information	pg. 50
I2C	change I ² C address	pg. 54
L	enable/disable LED	pg. 43
Name	set/show name of device	pg. 49
0	enable/disable internal temp	pg. 48
Plock	enable/disable protocol lock	pg. 57
R	returns a single reading	pg. 45
Sleep	enter sleep mode/low power	pg. 52
Status	retrieve status information	pg. 51

LED control

Command syntax

300ms processing delay

L,1 LED on default

L,0 **LED** off

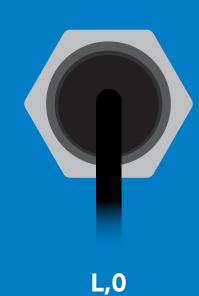
LED state on/off? **L,?**

Example

Response

L,1

L,0

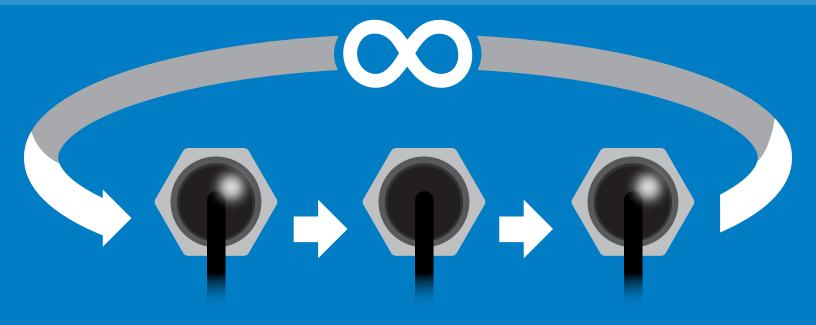


Find

Command syntax

Find LED rapidly blinks white, used to help find device

Example


Response

Find

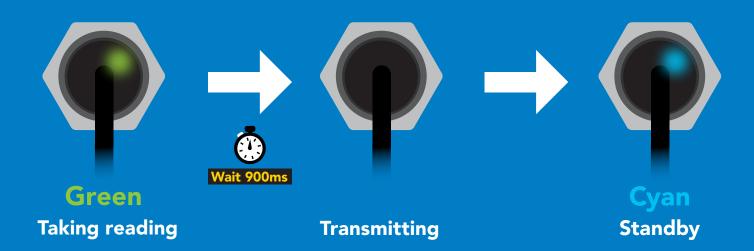
Taking reading

Command syntax

return 1 reading

Example

Response


R

Alarm

Command syntax

The alarm pin will = 1 when CO2 levels are > alarm set point. Alarm tolerance sets how far below the set point CO2 levels need to drop before the pin will = 0 again.

enable / disable alarm **Alarm, en, [1, 0]**

Alarm,n sets alarm

sets alarm tolerance (0-500 ppm) Alarm, tol, n

Alarm,? alarm set?

Example

Alarm, en, 1

Response

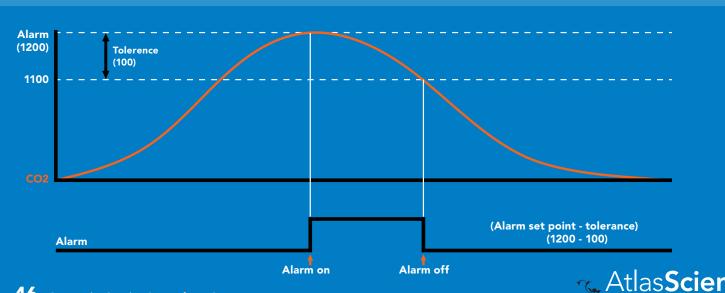
Enable alarm

Alarm, 1200

Alarm, tol, 100

CO2 level must fall 100 ppm below set point for alarm to reset.

Alarm,?



Dec

?,alarm,1200,100,1

ASCII

if all are enabled

Custom calibration 900ms @ processing delay

Command syntax

High point calibration can be from 3,000 ppm to 5,000 ppm. Calibration outside of that range my lead to accuracy issues.

calibrates the high point Cal,n

Cal,0 calibrates the zero point

Cal, clear restores calibration to factory settings

Cal,? device calibrated?

Example

Cal,3900

Cal.0

Cal, clear

Cal.?

Response

Dec

?Cal,0

ASCII

ASCII

Null

or

?Cal,1

Dec **ASCII**

or

?Cal,2

or

Dec

?Cal,3 **ASCII**

This device comes pre-calibrated.

Custom calibration should not be performed without scientific grade calibration gasses.

Enable/disable internal temperature from output string

Command syntax

300ms processing delay

O,t,[1,0]

enable or disable internal temperature

Example	Response
O,t,1	1 0 enable temperature
O,t,0	1 0 disable temperature Null Vait 300ms Dec Null
0,?	1 ?O,ppm,t 0 if internal temp Wait 300ms Dec ASCII Null is enabled

Enabling the internal temperature should only be used to confirm that the device is at thermal equilibrium. Refer to page 6

Naming device

300ms processing delay

Command syntax

Do not use spaces in the name

Name,n

set name

9 10 11 12 13 14 15 16

Name,

clears name

Up to 16 ASCII characters

Name,? show name

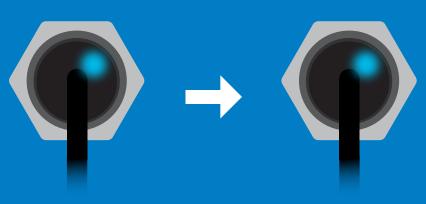
Example

Response

Name,

name has been cleared

Name,zzt


Name,?

?Name,zzt **ASCII**

Name,zzt

Name,?

?Name,zzt

Device information

Command syntax

300ms processing delay

device information

Response

i

?i,CO2,1.00 **ASCII**

Response breakdown

?i, CO2, 1.00 Device **Firmware**

Reading device status

Command syntax

voltage at Vcc pin and reason for last restart

Example

Response

Status

?Status,P,5.038

ASCII

Response breakdown

?Status, Reason for restart

5.038 Voltage at Vcc

Restart codes

- powered off
- software reset
- brown out
- watchdog W
- U unknown

Sleep mode/low power

Command syntax

enter sleep mode/low power Sleep

Send any character or command to awaken device.

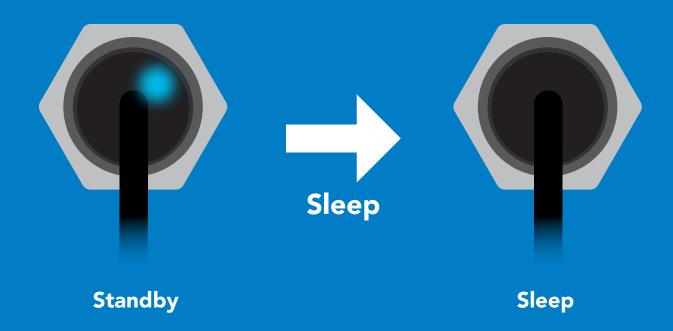
Example

Response

Sleep

no response

Do not read status byte after issuing sleep command.


Any command

wakes up device

STANDBY SLEEP 5V 45 mA 3.4 mA

3.3V

42 mA 3.0 mA

Protocol lock

Command syntax

300ms processing delay

Plock,1 enable Plock

Plock,0 disable Plock default

Plock on/off? Plock,?

Locks device to I²C mode.

Example

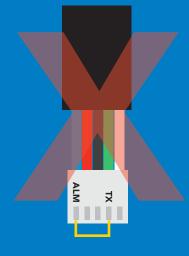
Response

Plock,1

Plock,0

Plock,?




Plock,1

Baud, 9600

cannot change to UART

cannot change to UART

I²C address change

Command syntax

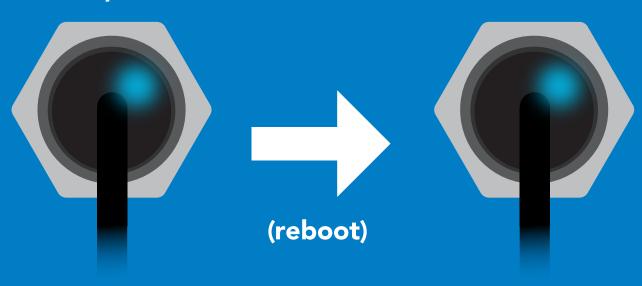
I2C,n sets I²C address and reboots into I²C mode

Example

Response

I2C,101

device reboot (no response given)


Warning!

Changing the I²C address will prevent communication between the circuit and the CPU until the CPU is updated with the new I²C address.

Default I²C address is 105 (0x69).

n = any number 1 - 127

12C,101

Factory reset

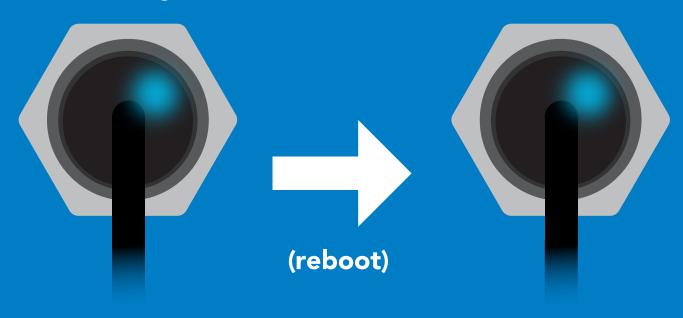
Command syntax

Factory reset will not take the device out of I²C mode.

Factory enable factory reset

I²C address will not change

Example


Response

Factory

device reboot (no response given)

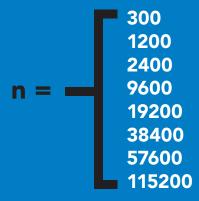
Clears custom calibration Response codes enabled

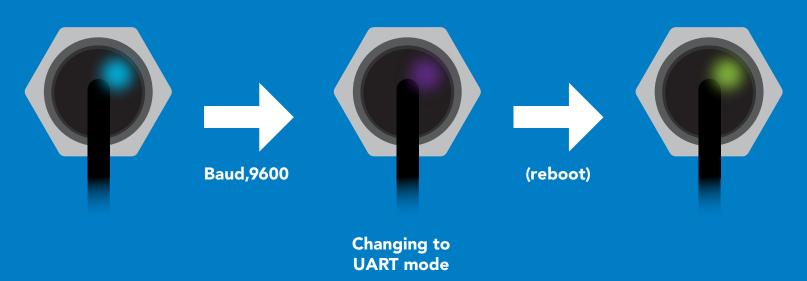
Factory

Change to UART mode

Command syntax

Baud, n switch from I²C to UART

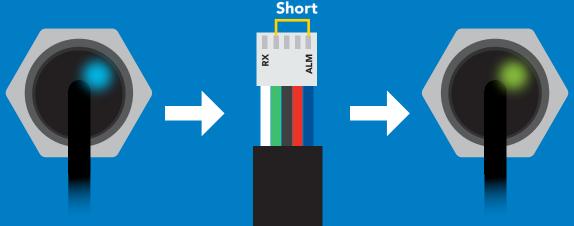

Example

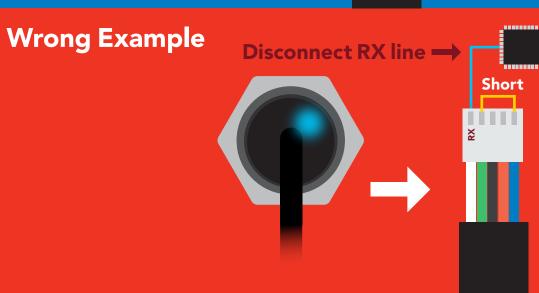

Response

Baud, 9600

reboot in UART mode

(no response given)





Manual switching to UART

- **Disconnect ground (power off)**
- Disconnect TX and RX
- Connect TX to ALM
- Confirm RX is disconnected
- Connect ground (power on)
- Wait for LED to change from Blue to Green
- Disconnect ground (power off)
- Reconnect all data and power

Example

Datasheet change log

Datasheet V 1.9

Revised info on the cover page

Datasheet V 1.8

Revised accuracy listed on cover page.

Datasheet V 1.7

Removed Import/Export commands from datasheet.

Datasheet V 1.6

Revised naming device info on pages 28 & 53.

Datasheet V 1.5

Revised info for "Pin out" on page 8.

Datasheet V 1.4

Added life expectancy to the cover page, and moved Default state to pg 11.

Datasheet V 1.3

Added page about pointing the CO2 sensor at bright lights on pg 4.

Datasheet V 1.2

Revised response for the sleep command in UART mode on pg 29.

Datasheet V 1.1

Added more information on the Export calibration and Import calibration commands.

Datasheet V 1.0

New datasheet

Firmware updates

V1.00 - (Sept 12, 2018)

• Initial release

V2.00 – (Jan 24, 2020)

• Changes the lamp power supply to 5V with boost converter, stops CO2 readings from going below 0.

V2.01 – (Nov 06, 2020)

• Adjusts lamp frequency to fit the lamp signal into the ADC range more consistently.

Warranty

Atlas Scientific™ Warranties the EZO-CO2™ Embedded NDIR CO2 Sensor to be free of defect during the debugging phase of device implementation, or 30 days after receiving the EZO-CO2™ Embedded NDIR CO2 Sensor (which ever comes first).

The debugging phase

The debugging phase as defined by Atlas Scientific[™] is the time period when the EZO-CO2™ Embedded NDIR CO2 Sensor is connected into a bread board, or shield. If the EZO-CO2™ Embedded NDIR CO2 Sensor is being debugged in a bread board, the bread board must be devoid of other components. If the EZO-CO2™ Embedded NDIR CO2 Sensor is being connected to a microcontroller, the microcontroller must be running code that has been designed to drive the EZO-CO2™ Embedded NDIR CO2 Sensor exclusively and output the EZO-CO2™ Embedded NDIR CO2 Sensor data as a serial string.

It is important for the embedded systems engineer to keep in mind that the following activities will void the EZO-CO2™ Embedded NDIR CO2 Sensor warranty:

- Soldering any part to the EZO-CO2™ Embedded NDIR CO2 Sensor.
- Running any code, that does not exclusively drive the EZO-CO2™ Embedded NDIR CO2 Sensor and output its data in a serial string.
- Embedding the EZO-CO2™ Embedded NDIR CO2 Sensor into a custom made device.
- Removing any potting compound.

Reasoning behind this warranty

Because Atlas Scientific[™] does not sell consumer electronics; once the device has been embedded into a custom made system, Atlas Scientific[™] cannot possibly warranty the EZO-CO2[™] Embedded NDIR CO2 Sensor, against the thousands of possible variables that may cause the EZO-CO2™ Embedded NDIR CO2 Sensor to no longer function properly.

Please keep this in mind:

- 1. All Atlas Scientific™ devices have been designed to be embedded into a custom made system by you, the embedded systems engineer.
- 2. All Atlas Scientific™ devices have been designed to run indefinitely without failure in the field.
- 3. All Atlas Scientific™ devices can be soldered into place, however you do so at your own risk.

Atlas Scientific™ is simply stating that once the device is being used in your application, Atlas Scientific[™] can no longer take responsibility for the EZO-CO2[™] Embedded NDIR CO2 Sensor continued operation. This is because that would be equivalent to Atlas Scientific™ taking responsibility over the correct operation of your entire device.