BFR30LT1, BFR31LT1

JFET Amplifiers

N-Channel

Features

- Pb -Free Package is Available

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage	V_{DS}	25	Vdc
Gate-Source Voltage	V_{GS}	25	Vdc

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Total Device Dissipation (Note 1)	P_{D}	225	mW $\mathrm{mW} /{ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			
Derate above $25^{\circ} \mathrm{C}$			

1. Device mounted on FR4 glass epoxy printed circuit board using the recommended footprint.
2. Alumina $=0.4 \times 0.3 \times 0.024$ in 99.5% alumina.

ON Semiconductor ${ }^{\text {r }}$
http://onsemi.com

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

BFR30LT1, BFR31LT1

ELECTRICAL CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit

OFF CHARACTERISTICS

Gate Reverse Current	$\left(\mathrm{V}_{\mathrm{GS}}=10 \mathrm{Vdc}, \mathrm{V}_{\mathrm{DS}}=0\right)$		$\mathrm{I}_{\mathrm{GSS}}$	-	0.2	nAdc
Gate Source Cutoff Voltage	$\left(\mathrm{I}_{\mathrm{D}}=0.5 \mathrm{nAdc}, \mathrm{V}_{\mathrm{DS}}=10 \mathrm{Vdc}\right)$	BFR30	$\mathrm{V}_{\mathrm{GS}(\mathrm{OFF})}$	-	5.0	Vdc
		BFR31		-	2.5	
Gate Source Voltage	$\left(\mathrm{I}_{\mathrm{D}}=1.0 \mathrm{mAdc}, \mathrm{V}_{\mathrm{DS}}=10 \mathrm{Vdc}\right)$	BFR30	V_{GS}	-0.7	-3.0	Vdc
			BFR31		-	-1.3
	$\left(\mathrm{I}_{\mathrm{D}}=50 \mu \mathrm{Adc}, \mathrm{V}_{\mathrm{DS}}=10 \mathrm{Vdc}\right)$	BFR30		-	-4.0	
		BFR31		-	-2.0	

ON CHARACTERISTICS

Zero-Gate-Voltage Drain Current	$\left(\mathrm{V}_{\mathrm{DS}}=10 \mathrm{Vdc}, \mathrm{V}_{\mathrm{GS}}=0\right)$	BFR30	$\mathrm{I}_{\mathrm{DSS}}$	4.0	10	mAdc
		BFR31		1.0	5.0	

SMALL-SIGNAL CHARACTERISTICS

Forward Transconductance $\begin{aligned} & \left(I_{D}=1.0 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{DS}}=10 \mathrm{Vdc}, \mathrm{f}=1.0 \mathrm{kHz}\right) \\ & \left(\mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{Adc}, \mathrm{~V}_{\mathrm{DS}}=10 \mathrm{Vdc}, \mathrm{f}=1.0 \mathrm{kHz}\right) \end{aligned}$	BFR30 BFR31 BFR30 BFR31	\| f_{fs} \|	$\begin{gathered} 1.0 \\ 1.5 \\ 0.5 \\ 0.75 \end{gathered}$	$\begin{aligned} & 4.0 \\ & 4.5 \\ & \hline \end{aligned}$	mmhos umhos
Output Admittance $\begin{aligned} & \left(\mathrm{I}_{\mathrm{D}}=1.0 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{DS}}=10 \mathrm{Vdc}, \mathrm{f}=1.0 \mathrm{kHz}\right) \\ & \left(\mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{Adc}, \mathrm{~V}_{\mathrm{DS}}=10 \mathrm{Vdc}\right) \end{aligned}$	BFR30 BFR31	\| os	40 20	25 15	
Input Capacitance	$\begin{aligned} & \left(\mathrm{I}_{\mathrm{D}}=1.0 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{DS}}=10 \mathrm{Vdc}, \mathrm{f}=1.0 \mathrm{MHz}\right) \\ & \left(\mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{Adc}, \mathrm{~V}_{\mathrm{DS}}=10 \mathrm{Vdc}, \mathrm{f}=1.0 \mathrm{MHz}\right) \end{aligned}$	$\mathrm{C}_{\text {iss }}$	-	$\begin{aligned} & 5.0 \\ & 4.0 \end{aligned}$	pF
Reverse Transfer Capacitance	$\begin{aligned} & \left(\mathrm{I}_{\mathrm{D}}=1.0 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{DS}}=10 \mathrm{Vdc}, \mathrm{f}=1.0 \mathrm{MHz}\right) \\ & \left(\mathrm{l}_{\mathrm{D}}=200 \mu \mathrm{Adc}, \mathrm{~V}_{\mathrm{DS}}=10 \mathrm{Vdc}, \mathrm{f}=1.0 \mathrm{MHz}\right) \end{aligned}$	Crss	-	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	pF

TYPICAL CHARACTERISTICS

Figure 1. Noise Figure versus Frequency

Figure 2. Noise Figure versus Source Resistance

BFR30LT1, BFR31LT1

TYPICAL CHARACTERISTICS

Figure 3. Typical Drain Characteristics

Figure 5. Typical Drain Characteristics

Figure 7. Typical Drain Characteristics

Figure 4. Common Source Transfer Characteristics

Figure 6. Common Source Transfer Characteristics

Figure 8. Common Source Transfer Characteristics

Note: Graphical data is presented for dc conditions. Tabular data is given for pulsed conditions (Pulse Width $=630 \mathrm{~ms}$, Duty Cycle $=10 \%$). Under dc conditions, self heating in higher I IDS units reduces $I_{\text {DSS }}$.

SOT-23 (TO-236)
CASE 318-08
ISSUE AS
DATE 30 JAN 2018

SCALE 4:1

NOTES:
IMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994
. CONTROLLING DIMENSION: MILLIMETERS.
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF THE BASE MATERIAL
4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.

	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
A	0.89	1.00	1.11	0.035	0.039	0.044
A1	0.01	0.06	0.10	0.000	0.002	0.004
b	0.37	0.44	0.50	0.015	0.017	0.020
\mathbf{c}	0.08	0.14	0.20	0.003	0.006	0.008
D	2.80	2.90	3.04	0.110	0.114	0.120
E	1.20	1.30	1.40	0.047	0.051	0.055
e	1.78	1.90	2.04	0.070	0.075	0.080
L	0.30	0.43	0.55	0.012	0.017	0.022
L1	0.35	0.54	0.69	0.014	0.021	0.027
$\mathbf{H E}_{\mathbf{E}}$	2.10	2.40	2.64	0.083	0.094	0.104
T	0°	---	10°	0°	---	10°

GENERIC
MARKING DIAGRAM*

RECOMMENDED SOLDERING FOOTPRINT

DIMENSIONS: MILLIMETERS

XXX = Specific Device Code
M = Date Code

- = Pb-Free Package
*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " \quad ", may or may not be present.

[^0] rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

[^0]: ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the

