

Current Sensor HCM 300A-0-20-CRA-0

Part number	20 31 030 0303
Specification	Current Sensor HCM 300A-0-20-CRA-0
HARTING eCatalogue	https://b2b.harting.com/20310300303

Image is for illustration purposes only. Please refer to product description.

Identification

Category	Current measurement
Series	HCM
Element	Current sensor
Sensor technology	Hall-Effekt Closed loop
Features	Hall effect compensated current sensor Measurable currents: AC, DC, pulsed, mixed High accuracy over the entire measuring range Galvanic insulation between primary and secondary current Switchboard mounting Applications: frequency converters, electrical drives, switched mode power suppplies, UPS

Version

Termination	JST B 3P-VH
Field of application	Industrial version

Technical characteristics

I _{PN} Nominal primary current	300 A
I _{PM} Primary current, measuring range	0 ±500 A
R _M Measuring resistance @ I _{PM max} , U _{C max} , T _{A max}	$5 \dots 38 \ \Omega$ For other primary currents see diagram.
I _{SN} Nominal secondary current	150 mA
K _N Turns ratio	1:2000
U _C Power supply	±12 ±20 V ±5 % @ -40 +85 °C ±24 V ±5 % @ -40 +70 °C

This product is not orderable anymore. Please contact your local distribution partner.

Technical characteristics

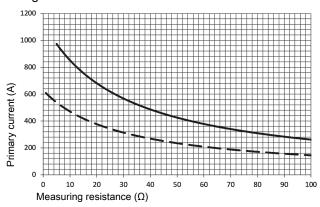
r commodi ondraoteristics	
I _C Current consumption @ U _{C min}	26 mA + I _S
X Overall accuracy @ I _{PN} , T _A = 25 °C	±0.5 %
E _L Linearity	<0.1 %
I_O Offset current @ I_P = 0 A, T_A = 25 °C	±0.4 mA
$I_{\mbox{OT}}$ maximum temperature drift of $I_{\mbox{O}}$	±0.7 mA
t_r Response time @ I_{PN}	<1 µs
di/dt with optimal coupling	>100 A/µs
f Frequency	0 100 kHz
T _A Ambient temperature	-40 +85 °C
T _S Storage temperature	-45 +90 °C
R _S Secondary coil resistance @ T _{A max}	30 Ω
U _D Test voltage, effective (50 Hz, 1 min)	3 kV Primary - secondary
U_{St} Rated impulse voltage (1,2/50 μ s)	6 kV
U _B Rated voltage	600 V
Overvoltage category	III
Pollution degree	2
L _s Clearance distance	9.5 mm
K _s Creepage distance	9.5 mm
Tightening torque	3.2 Nm (2x steel screw M4 - Vertical) 3.2 Nm (4x steel screw M4 - Horizontal)

Material properties

Material (hood/housing) Polycarbonate (PC)	Material (hood/housing)	Polycarbonate (PC)	
--	-------------------------	--------------------	--

Specifications and approvals

Specifications	EN 50178 IEC 61373
Approvals	DNV GL
CE	Yes


This product is not orderable anymore. Please contact your local distribution partner.

Commercial data

Packaging size	1
Net weight	133.6 g
Country of origin	Romania
European customs tariff number	90303370
eCl@ss	27210902 Current transformer

Measuring resistance

$$---$$
 V_C = ± 20 V -5 %, T_A = 85 °C $---$ V_C = ±12 V -5 %, T_A = 85 °C

Primary currents higher than I_{PM} only for peak!

Remark

If I_P flows in the direction of the arrow I_S is positive.

Over currents (νI_{PN}) or the missing of the supply voltage can cause an additional permanent magnetic offset.

The temperature of the primary conductor may not exceed 100 °C.

To achieve specified accuracy level in the temperature range of -40 ... -35 °C a warm up time of a few minutes is recommended.

Safety note

These transformers may only be used in electrical or power electronic applications which fulfill the relevant regulations (standards, EMC requirements,...).

This transformer must be used in limited-energy secondary circuits according to IEC 61010-1.

Product data sheet 20 31 030 0303 Current Sensor HCM 300A-0-20-CRA-0

This product is not orderable anymore. Please contact your local distribution partner.

Caution, risk of electric shock

- Pay attention to protect non-insulated high-power current carrying parts against direct contact (e.g. with a protective enclosure).
- When installing this sensor please make sure that the safe separation (between primary circuit and secondary circuit) is maintained over the whole circuits and their connections.
- The sensor may only be connected to a power supply respecting the SELV/PELV protective regulations according to EN 50 178. The installation of the power supply must be short-circuit-proof.
- Disconnecting the main power must be possible.
- The current sensors support a safe separation. The creepage and clearance distances are taken as a basis for the rated voltage. They are the shortest distance between the secondary connection and the sensor's window. The actual clearance and creepage distances depend on the position of the primary conductor respectively on the actual shortest distance between the primary conductor and the secondary connection.